Skip to main content
Log in

Miscibility and crystallization behaviors of stereocomplex-type poly(l- and d-lactide)/poly(methyl methacrylate) blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Stereocomplex-poly(l- and d-lactide) (sc-PLA) and poly(methyl methacrylate) (PMMA) blends were prepared by solution blending at PMMA loadings from 20 to 80 mass%. The miscibility and crystallization behaviors of the blends have been studied in detail by differential scanning calorimeter. The single-glass transition temperatures (T g) of the blends demonstrated that the obtained system was miscible in the amorphous state. It was observed that the crystallization peak temperature of sc-PLA/PMMA blends was marginally lower than that of neat sc-PLA at various cooling rates, indicating the dilution effect of PMMA on the sc-PLA component to restrain the overall crystallization process. In the study of isothermal crystallization kinetics, the reciprocal value of crystallization peak time (\( t_{\text{p}}^{ - 1} \)) decreased with increasing PMMA content, indicating that the addition of non-crystalline PMMA inhibited the isothermal crystallization of sc-PLA at an identical crystallization temperature (T c). Moreover, the negative value of Flory–Huggins interaction parameter (χ 12 = −0.16) of the blend further indicated that sc-PLA and PMMA formed miscible blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater. 2000;12:1841–6.

    Article  CAS  Google Scholar 

  2. Zuk PA, Zhu M, Ashjian P, Ugarte DAD, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotential stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  Google Scholar 

  3. Gottschalk C, Frey H. Hyperbranched polylactide copolymers. Macromolecules. 2006;39:1719–23.

    Article  CAS  Google Scholar 

  4. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  CAS  Google Scholar 

  5. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

    Article  CAS  Google Scholar 

  6. Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polylactide (PLA) and polyglycolide (PGA). J Biomed Mater Res. 1983;17:71–82.

    Article  CAS  Google Scholar 

  7. Samuel C, Cayuela J, Barakat I, Müller AJ, Raquez JM, Dubois P. Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces. 2013;5:11797–807.

    Article  CAS  Google Scholar 

  8. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  9. Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.

    Article  CAS  Google Scholar 

  10. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab. 2010;95:889–900.

    Article  CAS  Google Scholar 

  11. Kim KW, Lee BH, Kim HJ, Sriroth K, Dorgan JR. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim. 2012;108:1131–9.

    Article  CAS  Google Scholar 

  12. Blanco I. End-life prediction of commercial PLA used for food packaging through short term TGA experiments: real chance or low reliability? Chin J Polym Sci. 2014;32:681–9.

    Article  CAS  Google Scholar 

  13. Dong QL, Li Y, Han CY, Zhang Z, Xu K, Zhang HL, Dong LS. Poly(l-lactide)/poly(d-lactide)/multiwalled carbon nanotubes nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. J Appl Polym Sci. 2013;130:3919–29.

    Article  CAS  Google Scholar 

  14. Ikada Y, Jamshidi K, Tsuji H, Hyon S. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules. 1987;20:906–8.

    Article  Google Scholar 

  15. Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci. 2005;5:569–97.

    Article  CAS  Google Scholar 

  16. Gallos A, Fontaine G, Bourbigot S. Reactive extrusion of intumescent stereocomplexed poly-l, d-lactide: characterization and reaction to fire. Polym Adv Technol. 2013;24:130–3.

    Article  CAS  Google Scholar 

  17. Tan BH, Hussain H, Lin TT, Chua CY, Leong YW, Tjiu WW, Wong PK, He CB. Stable dispersions of hybrid nanoparticles induced by stereocomplexation between enantiomeric poly(lactide) star polymers. Langmuir. 2011;27:10538–47.

    Article  CAS  Google Scholar 

  18. Ahmed J, Varshney SK, Janvier F. Rheological and thermal properties of stereocomplexed polylactide films. J Therm Anal Calorim. 2014;115:2035–61.

    Google Scholar 

  19. Maglio G, Malinconico M, Migliozzi A, Groeninckx G. Immiscible poly(l-lactide)/poly(ε-caprolactone) blends: influence of the addition of a poly(l-lactide)–poly(oxyethylene) block copolymer on thermal behavior and morphology. Macromol Chem Phys. 2004;205:947–50.

    Article  Google Scholar 

  20. Takayama T, Todo M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J Mater Sci. 2006;41:4989–92.

    Article  CAS  Google Scholar 

  21. Han LJ, Han CY, Dong LS. Morphology and properties of the biosourced poly(lactic acid)/poly(ethylene oxide-b-amide-12) blends. Polym Compos. 2013;34:122–30.

    Article  CAS  Google Scholar 

  22. Yokohara T, Yamaguchi M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J. 2008;44:677–85.

    Article  CAS  Google Scholar 

  23. Chen GX, Kim HS, Kim ES, Yoon JS. Compatibilization-like effect of reactive organoclay on the poly(l-lactide)/poly(butylene succinate) blends. Polymer. 2005;46:11829–36.

    Article  CAS  Google Scholar 

  24. Coltelli MB, Bronco S, Chine C. The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends. Polym Degrad Stab. 2010;95:332–41.

    Article  CAS  Google Scholar 

  25. Li YJ, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci. 2007;7:921–8.

    Article  CAS  Google Scholar 

  26. Chena H, Pydab M, Cebea P. Non-isothermal crystallization of PET/PLA blends. Thermochim Acta. 2009;492:61–6.

    Article  Google Scholar 

  27. Han LJ, Han CY, Zhang HL, Chen S, Dong LS. Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Compos. 2012;33:850–9.

    Article  CAS  Google Scholar 

  28. Park JW, Im SS. Miscibility and morphology in blends of poly(l-lactic acid) and poly(vinyl acetate-co-vinyl alcohol). Polymer. 2003;44:4341–54.

    Article  CAS  Google Scholar 

  29. You Y, Youk JH, Lee SW, Min BM, Lee SJ, Park WH. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett. 2006;60:757–60.

    Article  CAS  Google Scholar 

  30. Lin Y, Zhang KY, Dong ZM, Dong LS, Li YS. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules. 2007;40:6257–67.

    Article  CAS  Google Scholar 

  31. Ishida S, Nagasaki R, Chino K, Dong T, Inoue Y. Toughening of poly(l-lactide) by melt blending with rubbers. J Appl Polym Sci. 2009;113:558–66.

    Article  CAS  Google Scholar 

  32. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V. Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J Appl Polym Sci. 2012;124:5027–36.

    CAS  Google Scholar 

  33. Ash BJ, Siegel RW, Schadler LS. Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci B. 2004;42:4371–83.

    Article  CAS  Google Scholar 

  34. Galka P, Kowalonek J, Kaczmarek H. Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. J Therm Anal Calorim. 2014;115:1387–94.

    Article  CAS  Google Scholar 

  35. Pope EJA, Asami M, Mackenzie JD. Transparent silica gel–PMMA composites. J Mater Res. 1989;4:1018–26.

    Article  CAS  Google Scholar 

  36. Clayton LM, Sikder AK, Kumar A, Cinke M, Meyyappan M, Gerasimov TG, Harmon JP. Transparent poly(methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Funct Mater. 2005;15:101–6.

    Article  CAS  Google Scholar 

  37. Blanco I, Abate L, Antonelli ML. The regression of isothermal thermogravimetric data to evaluate degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime prediction reliability. Polym Degrad Stab. 2011;96:1947–54.

    Article  CAS  Google Scholar 

  38. Blanco I, Abate L, Antonelli ML, Bottino FA. The regression of isothermal thermogravimetric data to evaluate degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime predictions reliability. Part II. Polym Degrad Stab. 2013;98:2291–6.

    Article  CAS  Google Scholar 

  39. Zhang G, Zhang J, Wang S, Shen D. Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci B. 2003;41:23–30.

    Article  CAS  Google Scholar 

  40. Li SH, Woo EM. Immiscibility–miscibility phase transitions in blends of poly(l-lactide) with poly(methyl methacrylate). Polym Int. 2008;57:1242–51.

    Article  CAS  Google Scholar 

  41. Samuel C, Raquez JM, Dubois P. PLLA/PMMA blends: a shear-induced miscibility with tunable morphologies and properties? Polymer. 2013;54:3931–9.

    Article  CAS  Google Scholar 

  42. Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M. Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer. 2006;47:4839–44.

    Article  CAS  Google Scholar 

  43. Eguiburua JL, Iruina JJ, Fernandez-Berridia MJ, Roman JS. Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer. 1998;39:6891–7.

    Article  Google Scholar 

  44. Hirota S, Sato T, Tominaga Y, Asai S, Sumita M. The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly(l-lactic acid)/poly(methyl methacrylate) blends. Polymer. 2006;47:3954–60.

    Article  CAS  Google Scholar 

  45. Xing PX, Dong LS, An YX, Feng ZL. Miscibility and crystallization of poly(β-hydroxybutyrate) and poly(p-vinylphenol) blends. Macromolecules. 1997;30:2726–33.

    Article  CAS  Google Scholar 

  46. Lima LT, Aurasb R, Rubinob M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  Google Scholar 

  47. Tsuji H. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys. 1996;197:3483–99.

    Article  CAS  Google Scholar 

  48. Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc. 1956;1:123–5.

    CAS  Google Scholar 

  49. Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem. 1952;2:493–500.

    Article  CAS  Google Scholar 

  50. Bélorgey G, Aubin M, Prud’homme RE. Studies of polyester/chlorinated poly(vinyl chloride) blends. Polymer. 1982;23:1051–6.

    Article  Google Scholar 

  51. Chiu FC, Min K. Miscibility, morphology and tensile properties of vinyl chloride polymer and poly(ε-caprolactone) blends. Polym Int. 2000;49:223–34.

    Article  CAS  Google Scholar 

  52. Xing PX, Ai X, Dong LS, Feng ZL. Miscibility and crystallization of poly(β-hydroxybutyrate)/poly(vinyl acetate-co-vinyl alcohol) blends. Macromolecules. 1998;31:6898–907.

    Article  CAS  Google Scholar 

  53. Pan PJ, Liang ZC, Zhu B, Dong T, Inoue Y. Blending effects on polymorphic crystallization of poly(l-lactide). Macromolecules. 2009;42:3374–80.

    Article  CAS  Google Scholar 

  54. Chiu FC, Li MT. Miscibility, thermal properties and polymorphism of syndiotactic polystyrene/poly(styrene-co-α-methyl styrene) blends. Polymer. 2003;44:8013–23.

    Article  CAS  Google Scholar 

  55. López LC, Wilkes GL. Non-isothermal crystallization kinetics of poly(p-phenylene sulphide). Polymer. 1989;30:882–7.

    Article  Google Scholar 

  56. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  57. Avrami M. Kinetics of phase change. II. Transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  58. Nishil T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)–poly (methyl methacrylate) mixtures. Macromolecules. 1975;8:909–15.

    Article  Google Scholar 

  59. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A. 1962;66:13–28.

    Article  Google Scholar 

  60. Sawai D, Tsugane Y, Tamada M, Kanamoto T, Sungil M, Hyon S. Crystal density and heat of fusion for a stereo-complex of poly(l-lactic acid) and poly(d-lactic acid). J Polym Sci B. 2007;45:2632–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (51021003, 50703042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Bian, Y., Li, Y. et al. Miscibility and crystallization behaviors of stereocomplex-type poly(l- and d-lactide)/poly(methyl methacrylate) blends. J Therm Anal Calorim 118, 359–367 (2014). https://doi.org/10.1007/s10973-014-3966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3966-1

Keywords

Navigation