Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 1, pp 359–367 | Cite as

Miscibility and crystallization behaviors of stereocomplex-type poly(l- and d-lactide)/poly(methyl methacrylate) blends

  • Qinglin Dong
  • Yijie Bian
  • Yi Li
  • Changyu Han
  • Lisong Dong


Stereocomplex-poly(l- and d-lactide) (sc-PLA) and poly(methyl methacrylate) (PMMA) blends were prepared by solution blending at PMMA loadings from 20 to 80 mass%. The miscibility and crystallization behaviors of the blends have been studied in detail by differential scanning calorimeter. The single-glass transition temperatures (T g) of the blends demonstrated that the obtained system was miscible in the amorphous state. It was observed that the crystallization peak temperature of sc-PLA/PMMA blends was marginally lower than that of neat sc-PLA at various cooling rates, indicating the dilution effect of PMMA on the sc-PLA component to restrain the overall crystallization process. In the study of isothermal crystallization kinetics, the reciprocal value of crystallization peak time (\( t_{\text{p}}^{ - 1} \)) decreased with increasing PMMA content, indicating that the addition of non-crystalline PMMA inhibited the isothermal crystallization of sc-PLA at an identical crystallization temperature (T c). Moreover, the negative value of Flory–Huggins interaction parameter (χ 12 = −0.16) of the blend further indicated that sc-PLA and PMMA formed miscible blends.


Miscibility Crystallization Stereocomplex Poly(lactide) Poly(methyl methacrylate) 



This work is supported by the National Science Foundation of China (51021003, 50703042).


  1. 1.
    Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater. 2000;12:1841–6.CrossRefGoogle Scholar
  2. 2.
    Zuk PA, Zhu M, Ashjian P, Ugarte DAD, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotential stem cells. Mol Biol Cell. 2002;13:4279–95.CrossRefGoogle Scholar
  3. 3.
    Gottschalk C, Frey H. Hyperbranched polylactide copolymers. Macromolecules. 2006;39:1719–23.CrossRefGoogle Scholar
  4. 4.
    Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.CrossRefGoogle Scholar
  5. 5.
    Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.CrossRefGoogle Scholar
  6. 6.
    Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polylactide (PLA) and polyglycolide (PGA). J Biomed Mater Res. 1983;17:71–82.CrossRefGoogle Scholar
  7. 7.
    Samuel C, Cayuela J, Barakat I, Müller AJ, Raquez JM, Dubois P. Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces. 2013;5:11797–807.CrossRefGoogle Scholar
  8. 8.
    Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.CrossRefGoogle Scholar
  9. 9.
    Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.CrossRefGoogle Scholar
  10. 10.
    Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab. 2010;95:889–900.CrossRefGoogle Scholar
  11. 11.
    Kim KW, Lee BH, Kim HJ, Sriroth K, Dorgan JR. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim. 2012;108:1131–9.CrossRefGoogle Scholar
  12. 12.
    Blanco I. End-life prediction of commercial PLA used for food packaging through short term TGA experiments: real chance or low reliability? Chin J Polym Sci. 2014;32:681–9.CrossRefGoogle Scholar
  13. 13.
    Dong QL, Li Y, Han CY, Zhang Z, Xu K, Zhang HL, Dong LS. Poly(l-lactide)/poly(d-lactide)/multiwalled carbon nanotubes nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. J Appl Polym Sci. 2013;130:3919–29.CrossRefGoogle Scholar
  14. 14.
    Ikada Y, Jamshidi K, Tsuji H, Hyon S. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules. 1987;20:906–8.CrossRefGoogle Scholar
  15. 15.
    Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci. 2005;5:569–97.CrossRefGoogle Scholar
  16. 16.
    Gallos A, Fontaine G, Bourbigot S. Reactive extrusion of intumescent stereocomplexed poly-l, d-lactide: characterization and reaction to fire. Polym Adv Technol. 2013;24:130–3.CrossRefGoogle Scholar
  17. 17.
    Tan BH, Hussain H, Lin TT, Chua CY, Leong YW, Tjiu WW, Wong PK, He CB. Stable dispersions of hybrid nanoparticles induced by stereocomplexation between enantiomeric poly(lactide) star polymers. Langmuir. 2011;27:10538–47.CrossRefGoogle Scholar
  18. 18.
    Ahmed J, Varshney SK, Janvier F. Rheological and thermal properties of stereocomplexed polylactide films. J Therm Anal Calorim. 2014;115:2035–61.Google Scholar
  19. 19.
    Maglio G, Malinconico M, Migliozzi A, Groeninckx G. Immiscible poly(l-lactide)/poly(ε-caprolactone) blends: influence of the addition of a poly(l-lactide)–poly(oxyethylene) block copolymer on thermal behavior and morphology. Macromol Chem Phys. 2004;205:947–50.CrossRefGoogle Scholar
  20. 20.
    Takayama T, Todo M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J Mater Sci. 2006;41:4989–92.CrossRefGoogle Scholar
  21. 21.
    Han LJ, Han CY, Dong LS. Morphology and properties of the biosourced poly(lactic acid)/poly(ethylene oxide-b-amide-12) blends. Polym Compos. 2013;34:122–30.CrossRefGoogle Scholar
  22. 22.
    Yokohara T, Yamaguchi M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J. 2008;44:677–85.CrossRefGoogle Scholar
  23. 23.
    Chen GX, Kim HS, Kim ES, Yoon JS. Compatibilization-like effect of reactive organoclay on the poly(l-lactide)/poly(butylene succinate) blends. Polymer. 2005;46:11829–36.CrossRefGoogle Scholar
  24. 24.
    Coltelli MB, Bronco S, Chine C. The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends. Polym Degrad Stab. 2010;95:332–41.CrossRefGoogle Scholar
  25. 25.
    Li YJ, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci. 2007;7:921–8.CrossRefGoogle Scholar
  26. 26.
    Chena H, Pydab M, Cebea P. Non-isothermal crystallization of PET/PLA blends. Thermochim Acta. 2009;492:61–6.CrossRefGoogle Scholar
  27. 27.
    Han LJ, Han CY, Zhang HL, Chen S, Dong LS. Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Compos. 2012;33:850–9.CrossRefGoogle Scholar
  28. 28.
    Park JW, Im SS. Miscibility and morphology in blends of poly(l-lactic acid) and poly(vinyl acetate-co-vinyl alcohol). Polymer. 2003;44:4341–54.CrossRefGoogle Scholar
  29. 29.
    You Y, Youk JH, Lee SW, Min BM, Lee SJ, Park WH. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett. 2006;60:757–60.CrossRefGoogle Scholar
  30. 30.
    Lin Y, Zhang KY, Dong ZM, Dong LS, Li YS. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules. 2007;40:6257–67.CrossRefGoogle Scholar
  31. 31.
    Ishida S, Nagasaki R, Chino K, Dong T, Inoue Y. Toughening of poly(l-lactide) by melt blending with rubbers. J Appl Polym Sci. 2009;113:558–66.CrossRefGoogle Scholar
  32. 32.
    Jaratrotkamjorn R, Khaokong C, Tanrattanakul V. Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J Appl Polym Sci. 2012;124:5027–36.Google Scholar
  33. 33.
    Ash BJ, Siegel RW, Schadler LS. Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci B. 2004;42:4371–83.CrossRefGoogle Scholar
  34. 34.
    Galka P, Kowalonek J, Kaczmarek H. Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. J Therm Anal Calorim. 2014;115:1387–94.CrossRefGoogle Scholar
  35. 35.
    Pope EJA, Asami M, Mackenzie JD. Transparent silica gel–PMMA composites. J Mater Res. 1989;4:1018–26.CrossRefGoogle Scholar
  36. 36.
    Clayton LM, Sikder AK, Kumar A, Cinke M, Meyyappan M, Gerasimov TG, Harmon JP. Transparent poly(methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Funct Mater. 2005;15:101–6.CrossRefGoogle Scholar
  37. 37.
    Blanco I, Abate L, Antonelli ML. The regression of isothermal thermogravimetric data to evaluate degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime prediction reliability. Polym Degrad Stab. 2011;96:1947–54.CrossRefGoogle Scholar
  38. 38.
    Blanco I, Abate L, Antonelli ML, Bottino FA. The regression of isothermal thermogravimetric data to evaluate degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime predictions reliability. Part II. Polym Degrad Stab. 2013;98:2291–6.CrossRefGoogle Scholar
  39. 39.
    Zhang G, Zhang J, Wang S, Shen D. Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci B. 2003;41:23–30.CrossRefGoogle Scholar
  40. 40.
    Li SH, Woo EM. Immiscibility–miscibility phase transitions in blends of poly(l-lactide) with poly(methyl methacrylate). Polym Int. 2008;57:1242–51.CrossRefGoogle Scholar
  41. 41.
    Samuel C, Raquez JM, Dubois P. PLLA/PMMA blends: a shear-induced miscibility with tunable morphologies and properties? Polymer. 2013;54:3931–9.CrossRefGoogle Scholar
  42. 42.
    Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M. Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer. 2006;47:4839–44.CrossRefGoogle Scholar
  43. 43.
    Eguiburua JL, Iruina JJ, Fernandez-Berridia MJ, Roman JS. Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer. 1998;39:6891–7.CrossRefGoogle Scholar
  44. 44.
    Hirota S, Sato T, Tominaga Y, Asai S, Sumita M. The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly(l-lactic acid)/poly(methyl methacrylate) blends. Polymer. 2006;47:3954–60.CrossRefGoogle Scholar
  45. 45.
    Xing PX, Dong LS, An YX, Feng ZL. Miscibility and crystallization of poly(β-hydroxybutyrate) and poly(p-vinylphenol) blends. Macromolecules. 1997;30:2726–33.CrossRefGoogle Scholar
  46. 46.
    Lima LT, Aurasb R, Rubinob M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.CrossRefGoogle Scholar
  47. 47.
    Tsuji H. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys. 1996;197:3483–99.CrossRefGoogle Scholar
  48. 48.
    Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc. 1956;1:123–5.Google Scholar
  49. 49.
    Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem. 1952;2:493–500.CrossRefGoogle Scholar
  50. 50.
    Bélorgey G, Aubin M, Prud’homme RE. Studies of polyester/chlorinated poly(vinyl chloride) blends. Polymer. 1982;23:1051–6.CrossRefGoogle Scholar
  51. 51.
    Chiu FC, Min K. Miscibility, morphology and tensile properties of vinyl chloride polymer and poly(ε-caprolactone) blends. Polym Int. 2000;49:223–34.CrossRefGoogle Scholar
  52. 52.
    Xing PX, Ai X, Dong LS, Feng ZL. Miscibility and crystallization of poly(β-hydroxybutyrate)/poly(vinyl acetate-co-vinyl alcohol) blends. Macromolecules. 1998;31:6898–907.CrossRefGoogle Scholar
  53. 53.
    Pan PJ, Liang ZC, Zhu B, Dong T, Inoue Y. Blending effects on polymorphic crystallization of poly(l-lactide). Macromolecules. 2009;42:3374–80.CrossRefGoogle Scholar
  54. 54.
    Chiu FC, Li MT. Miscibility, thermal properties and polymorphism of syndiotactic polystyrene/poly(styrene-co-α-methyl styrene) blends. Polymer. 2003;44:8013–23.CrossRefGoogle Scholar
  55. 55.
    López LC, Wilkes GL. Non-isothermal crystallization kinetics of poly(p-phenylene sulphide). Polymer. 1989;30:882–7.CrossRefGoogle Scholar
  56. 56.
    Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  57. 57.
    Avrami M. Kinetics of phase change. II. Transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  58. 58.
    Nishil T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)–poly (methyl methacrylate) mixtures. Macromolecules. 1975;8:909–15.CrossRefGoogle Scholar
  59. 59.
    Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A. 1962;66:13–28.CrossRefGoogle Scholar
  60. 60.
    Sawai D, Tsugane Y, Tamada M, Kanamoto T, Sungil M, Hyon S. Crystal density and heat of fusion for a stereo-complex of poly(l-lactic acid) and poly(d-lactic acid). J Polym Sci B. 2007;45:2632–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Qinglin Dong
    • 1
    • 2
  • Yijie Bian
    • 1
  • Yi Li
    • 1
  • Changyu Han
    • 1
  • Lisong Dong
    • 1
  1. 1.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Synthetic Resin and Special Fiber Research CenterChangchun University of TechnologyChangchunChina

Personalised recommendations