Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 1, pp 111–122 | Cite as

Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys

  • Safaa N. Saud
  • E. Hamzah
  • T. Abubakar
  • Mohd Zamri
  • Masaki Tanemura


The effect of Ti additions on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys (SMA) was studied by means of a differential scanning calorimeter, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), a tensile test, a hardness test, and a shape memory effect test. The experimental results show that the Ti additions have an effective influence on the phase transformation behavior through generating a new phase into the microstructure, which is known as X-phase and/or controlling the grain size. The results of the XRD confirmed that the X-phase is a combination of two compounds, AlNi2Ti and Ti3·3Al. Nevertheless, it was found that with 0.7 mass% of Ti, the best phase transformation temperatures and mechanical properties were obtained. These improvements were due to the highest existence of the X-phase into the alloy along with a noticeable decrement of grain size. The Ti additions to the Cu–Al–Ni SMA were found to increase the ductility from 1.65 to 3.2 %, corresponding with increasing the strain recovery by the shape memory effect from 50 to 100 %; in other words, a complete recovery occurred after Ti additions.


Cu–Al–Ni SMA Martensitic transformation X-phase Shape memory effect 



The author(s) would like to thank the Malaysian Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia for providing the financial support and facilities for this research, under Grant No. R.J130000.7824.4F150.


  1. 1.
    Ibarra A, Juan JS, Bocanegra EH, Nó ML. Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy. Mater Sci Eng A. 2006;438–440:782–6.CrossRefGoogle Scholar
  2. 2.
    Recarte V, Pérez-Landazábal JI, Nó ML, San J. Juan, Study by resonant ultrasound spectroscopy of the elastic constants of the β phase in Cu–Al–Ni shape memory alloys. Mater Sci Eng A. 2004;370:488–91.CrossRefGoogle Scholar
  3. 3.
    Font J, Cesari E, Muntasell J, Pons J. Thermomechanical cycling in Cu–Al–Ni-based melt-spun shape-memory ribbons. Mater Sci Eng A. 2003;354:207–11.CrossRefGoogle Scholar
  4. 4.
    Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V, Nó ML, Juan JS. Study of the stability and decomposition process of the β phase in Cu–Al–Ni shape memory alloys. Mater Sci Eng A. 2006;438–440:734–7.CrossRefGoogle Scholar
  5. 5.
    Saburi T, Wayman CM. Crystallographic similarities in shape memory martensites. Acta Metall. 1979;27:979–95.CrossRefGoogle Scholar
  6. 6.
    Van Humbeeck J, Van Hulle D, Delacey L. two-stage martensite transformation in a Cu-13. 99 mass Al-3. 5 mass% Ni alloy. Trans Jpn Inst Met. 1987;28:383–91.CrossRefGoogle Scholar
  7. 7.
    Gastien R, Corbellani C, Alvarez Villar H, Sade M, Lovey F. Pseudoelastic cycling in Cu–14.3 Al–4.1 Ni (wt%) single crystals. Mater Sci Eng A. 2003;349:191–6.CrossRefGoogle Scholar
  8. 8.
    Gastien R, Corbellani C, Sade M, Lovey F. Thermal and pseudoelastic cycling in Cu–14.1 Al–4.2 Ni (wt%) single crystals. Acta Mater. 2005;53:1685–91.CrossRefGoogle Scholar
  9. 9.
    Sarı U, Aksoy İ. Electron microscopy study of 2H and 18R martensites in Cu–11.92 wt% Al–3.78 wt% Ni shape memory alloy. J Alloy Compd. 2006;417:138–42.CrossRefGoogle Scholar
  10. 10.
    Recarte V, Pérez-Sáez RB, San Juan J, Bocanegra EH, Nó ML. Influence of Al and Ni concentration on the Martensitic transformation in Cu–Al–Ni shape-memory alloys. Metall Mater Trans A. 2002;33:2581–91.CrossRefGoogle Scholar
  11. 11.
    Wei ZG, Peng HY, Yang DZ, Chung CY, Lai JKL. Reverse transformations in CuA1NiMnTi alloy at elevated temperatures. Acta Mater. 1996;44:1189–99.CrossRefGoogle Scholar
  12. 12.
    Morris MA, Gunter S. Effect of heat treatment and thermal cycling on transformation temperatures of ductile Cu–Al–Ni–Mn–B alloys. Scripta Metallurgica et Materiala. 1992;26(11):1663–8.CrossRefGoogle Scholar
  13. 13.
    Sarı U, Kırındı T. Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Mater Charact. 2008;59:920–9.CrossRefGoogle Scholar
  14. 14.
    Yildiz K, Kok M. Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J Therm Anal Calorim. 2014;115:1509–14.CrossRefGoogle Scholar
  15. 15.
    Karagoz Z, Canbay CA. Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2013;114:1069–74.CrossRefGoogle Scholar
  16. 16.
    Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K. Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater. 2005;53:4121–33.CrossRefGoogle Scholar
  17. 17.
    Adachi K, Shoji K, Hamada Y. Formation of (X) phases and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titanium. ISIJ Int. 1989;29:378–87.CrossRefGoogle Scholar
  18. 18.
    Sari U. Influences of 2.5 wt% Mn addition on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys. Int J Miner Metall Mater. 2010;17:192–8.CrossRefGoogle Scholar
  19. 19.
    Chang SH. Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys. Mater Chem Phys. 2011;125:358–63.CrossRefGoogle Scholar
  20. 20.
    Nishiyama Z, Fine ME, Wayman CM. Martensitic transformation. New York: Academic Press; 1978.Google Scholar
  21. 21.
    Hurtado I, Ratchev P, Van Humbeeck J, Delaey L. A fundamental study of the X-phase precipitation in Cu–Al–Ni–Ti–(Mn) shape memory alloys. Acta Mater. 1995;44:3299–306.CrossRefGoogle Scholar
  22. 22.
    Lee JS, Wayman CM. Grain refinement of a Cu–Al–Ni shape memory alloy by Ti and Zr additions. Trans Jpn Inst Met. 1986;27:584–91.CrossRefGoogle Scholar
  23. 23.
    Ratchev P, Van Humbeeck J, Delaey L. On the formation of 2H stacking sequence in 18R martensite plates in a precipitate containing CuAlNiTiMn alloy. Acta Metall Mater. 1993;41(8):2441–9.CrossRefGoogle Scholar
  24. 24.
    Malarría J, Elgoyhen C, Vermaut P, Ochin P, Portier R. Shape memory properties of Cu-based thin tapes obtained by rapid solidification methods. Mater Sci Eng A. 2006;438–440:763–7.CrossRefGoogle Scholar
  25. 25.
    Dutkiewicz J, Pons J, Cesari E. Effect of γ precipitates on the martensitic transformation in Cu–Al–Mn alloys. Mater Sci Eng A. 1992;158:119–28.CrossRefGoogle Scholar
  26. 26.
    Bouabdallah M, Baguenane-Benalia G, Saadi A, Cheniti H, Gachon J-C, Patoor E. Precipitation sequence during ageing in β1 phase of Cu–Al–Ni shape memory alloy. J Therm Anal Calorim. 2013;112:279–83.CrossRefGoogle Scholar
  27. 27.
    Xuan JBQ, Hsu TY. The effect of martensite ordering on shape memory effect in a copper–zinc–aluminium alloy. Mater Sci Eng. 1987;93:205–11.CrossRefGoogle Scholar
  28. 28.
    Salzbrenner RJ, Cohen M. On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1979;27:739–48.CrossRefGoogle Scholar
  29. 29.
    Adigüzel O. Martensite ordering and stabilization in copper based shape memory alloys. Mater Res Bull. 1995;30:755–60.CrossRefGoogle Scholar
  30. 30.
    Sampath V. Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu–Al–Ni alloys. Smart Mater Struct. 2005;14:S253–60.CrossRefGoogle Scholar
  31. 31.
    Balo ŞN, Sel N. Effects of thermal aging on transformation temperatures and some physical parameters of Cu-13.5 wt% Al-4 wt% Ni shape memory alloy. Thermochim Acta. 2012;536:1–5.CrossRefGoogle Scholar
  32. 32.
    Yang G-S, Lee J-K, Jang W-Y. Effect of grain refinement on phase transformation behavior and mechanical properties of Cu-based alloy. Trans Nonferrous Met Soc China. 2009;19:979–83.CrossRefGoogle Scholar
  33. 33.
    Aydogdu A, Aydogdu Y, Adiguzel O. Long-term ageing behaviour of martensite in shape memory Cu–Al–Ni alloys. J Mater Process Technol. 2004;153–154:164–9.CrossRefGoogle Scholar
  34. 34.
    Cullity BD, Stock SR. Elements of X-ray diffraction. Upper Saddle River: Prentice Hall; 2001.Google Scholar
  35. 35.
    Patterson AL. The Scherrer Formula for X-ray Particle Size Determination. Phys Rev. 1939;56:978–82.CrossRefGoogle Scholar
  36. 36.
    Tatar C. Gamma irradiation-induced evolution of the transformation temperatures and thermodynamic parameters in a CuZnAl shape memory alloy. Thermochim Acta. 2005;437:121–5.CrossRefGoogle Scholar
  37. 37.
    Ortín J, Planes A. Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1989;37:1433–41.CrossRefGoogle Scholar
  38. 38.
    Mallik US, Sampath V. Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J Alloy Compd. 2008;459:142–7.CrossRefGoogle Scholar
  39. 39.
    Saiji Matsuoka MH, Oshima R, Eiichi Fujita F. Improvement of ductility of melt spun Cu–Al–Ni shape memory alloy ribbons by addition of Ti or Zr. Jpn J Appl Phys. 1983;22:528–30.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Safaa N. Saud
    • 1
  • E. Hamzah
    • 1
  • T. Abubakar
    • 1
  • Mohd Zamri
    • 1
    • 2
  • Masaki Tanemura
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaJohorMalaysia
  2. 2.Department of Frontier MaterialsNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations