Skip to main content
Log in

Study of catalytic action of micro-particles and synthesized nanoparticles of CuS on cellulose pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The catalytic action of copper sulfide (CuS) micro-particles and as-synthesized nanoparticles was studied on cellulose pyrolysis. The market procured CuS powder was used as micro-particles without any treatment. The CuS nanoparticles were synthesized at ambient temperature by simple wet chemical technique. Before using the micro-particles and nanoparticles for catalytic study, they were comprehensively characterized. The thermal analysis including catalytic properties of both the micro-particles and nanoparticles of CuS on cellulose pyrolysis was studied employing thermogravimetric (TG), differential thermogravimetric, and differential thermal analysis techniques. Prior to the study as catalyst in cellulose pyrolysis, the CuS micro- and nanoparticles were characterized by thermal analysis in inert atmosphere. The TG curves showed two steps and five steps decomposition having total mass loss of 29 and 42 % in case of CuS micro- and as-synthesized nanoparticles, respectively. The catalytic study in cellulose pyrolysis showed that the decomposition commences at temperature 295 °C for pure cellulose, 270 °C for cellulose mixed with 3 % CuS micro-particles and 205 °C for cellulose mixed with 3 % CuS nanoparticles. It clearly showed that the decomposition starting temperature decreased by 65 °C in case of cellulose mixed with CuS nanoparticles compared to cellulose mixed with CuS micro-particles. Thus, CuS nanoparticles act as better catalyst then CuS micro-particles in cellulose pyrolysis. The obtained results are deliberated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  2. Senneca O, Chirone R, Masi S, Salatino P. A thermogravimetric study of nonfossil solid fuels 1. Inert pyrolysis. Energy Fuels. 2002;16:653–60.

    Article  CAS  Google Scholar 

  3. Shakya BD. Pyrolysis of waste plastics to generate useful fuel containing hydrogen using a solar thermochemical process. Australia: Master of Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney; 2007.

    Google Scholar 

  4. Cai J, Liu R. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels. 2007;21:3695–7.

    Article  CAS  Google Scholar 

  5. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  6. Zhang Q, Li Q, Zhang L, Fang Y, Wang Z. Experimental and kinetic investigation of the pyrolysis, combustion, and gasification of deoiled asphalt. J Therm Anal Calorim. 2014;115:1929–38.

    Article  CAS  Google Scholar 

  7. Muller HM, Bockhorn H, Krebs L, Muller U. A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrolysis. 2003;68–69:231–49.

    Article  Google Scholar 

  8. Vecchio S, Luciano G, Franceschi E. Explorative kinetic study on the thermal degradation of five wood species for applications in the archeological filed. Ann Chim. 2006;96:715–25.

    Article  CAS  Google Scholar 

  9. Braga RM, Melo DMA, Aquino FM, Freitas JCO, Melo MAF, Barros JMF, Fontes MSB. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2014;115:1915–20.

    Article  CAS  Google Scholar 

  10. Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q. Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. J Therm Anal Calorim. 2014;115:227–35.

    Article  CAS  Google Scholar 

  11. Li Q, Wang LS, Hu BY, Yang C, Zhou L, Zhang L. Preparation and characterization of NiO nanoparticles through calcinations of malate gel. Mater Lett. 2007;61:1615–8.

    Article  CAS  Google Scholar 

  12. Bhargava RN. Doped nanocrystalline materials-physics and applications. J Lumin. 1996;70:85–94.

    Article  CAS  Google Scholar 

  13. Li J, Yan R, Xiao B, Liang DT, Lee DH. Preparation of Nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuels. 2008;22:16–23.

    Article  Google Scholar 

  14. Raevskaya AE, Stroyuk AL, Kuchmii SY, Kryukov AI. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. J Mol Catal A. 2004;212:259–65.

    Article  CAS  Google Scholar 

  15. Ding TY, Wang MS, Guo SP, Guo CG, Huang JS. CuS nanoflowers prepared by polyol route and their photocatalytic property. Mater Lett. 2008;62:4529–31.

    Article  CAS  Google Scholar 

  16. Li M, Wu Q, Shi J. A simple route to synthesize CuS framework with porosity. J Alloys Compd. 2010;489:343–7.

    Article  CAS  Google Scholar 

  17. Liu J, Xue D. Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route. J Cryst Growth. 2009;311:500–3.

    Article  CAS  Google Scholar 

  18. Zhang F, Wong SS. Controlled synthesis of semiconducting metal sulfide nanowires. Chem Mater. 2009;21:4541–54.

    Article  CAS  Google Scholar 

  19. Singh KV, Alfredo AMM, Andavan GTS, Bozhilov KN, Ozkan M. A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition. Chem Mater. 2007;19:2446–54.

    Article  CAS  Google Scholar 

  20. Wang X, Fang Z, Lin X. Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation. J Nanopart Res. 2009;11:731–6.

    Article  CAS  Google Scholar 

  21. Zhang J, Zhang Z. Hydrothermal synthesis and optical properties of CuS nanoplates. Mater Lett. 2008;62:2279–81.

    Article  CAS  Google Scholar 

  22. Xu H, Wang W, Zhu W. Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route. Mater Lett. 2006;60:2203–6.

    Article  CAS  Google Scholar 

  23. Shen XP, Zhao H, Shu HQ, Zhou H, Yuan AH. Selfassembly of CuS nanoflakes into flower-like microsphers: synthesis and characterization. J Phys Chem Solids. 2009;70:422–7.

    CAS  Google Scholar 

  24. Thongtem S, Wichasilp C, Thongtem T. Transient solid-state production of nanostructured CuS flowers. Mater Lett. 2009;63:2409–12.

    Article  CAS  Google Scholar 

  25. Tan C, Lu R, Xue P, Bao Y, Zhao Y. Synthesis of CuS nanoribbons template by hydrogel. Mater Chem Phys. 2008;112:500–3.

    CAS  Google Scholar 

  26. Zhang H, Zhang Y, Yu J, Yang D. Phase-selective synthesis and self-assembly of monodisperse copper sulfide nanocrystals. J Phys Chem C. 2008;112:13390–4.

    Article  CAS  Google Scholar 

  27. Chaki SH, Deshpande MP, Mahato KS, Chaudhary MD, Tailor JP. Synthesis and characterization of CuS nanowhiskers. Adv Sci Lett. 2012;17:162–6.

    Article  CAS  Google Scholar 

  28. Li F, Kong T, Bi W, Li D, Li Z, Huang X. Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method. Appl Surf Sci. 2009;255:6285–9.

    CAS  Google Scholar 

  29. Thongtem T, Phuruangrat A, Thongtem S. Characterization of copper sulfide nanostructured spheres and nanotube synthesized by microwave-assisted solvothermal method. Mater Lett. 2010;64:136–9.

    Article  CAS  Google Scholar 

  30. Zou J, Zhang J, Zhang B, Zhao P, Xu X, Chen J, Huang K. Synthesis and characterization of copper sulfide nanocrystal with three-dimensional flower-shape. J Mater Sci. 2007;42:9181–6.

    Article  CAS  Google Scholar 

  31. Wang H, Zhang JR, Zhao XN, Shu X, Zhu JJ. Preparation of copper sulfide and nickel sulfide nanoparticles by sonochemical method. Mater Lett. 2002;55:253–8.

    Article  CAS  Google Scholar 

  32. Yang YJ, Hu S. A facile electrochemical synthesis of covellite nanomaterials at room temperature. J Solid State Electrochem. 2008;12:1405–10.

    CAS  Google Scholar 

  33. Gao L, Wang E, Lain S, Kang Z, Lan Y, Wu D. Microemuldion-directed synthesis of different CuS nanocrystals. Solid State Commun. 2004;130:309–12.

    Article  CAS  Google Scholar 

  34. Xu J, Cui X, Zhang J, Liang H, Wang HW, Li J. Preparation of CuS nanoparticles embedded in poly (vinyl alcohol) nanofibre via electrospinning. Bulletin Mater Sci. 2008;31:189–92.

    Article  CAS  Google Scholar 

  35. Soni BH, Deshpande MP, Bhatt SV, Chaki SH, Sathe V. X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy of undoped and Mn-doped ZnO nanoparticles prepared by Microwave Irradiation. J Appl Spectrosc. 2013;79:901–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Two of the authors (SHC and JPT) are thankful to the University Grants Commission (UGC), New Delhi for providing financial assistance through Major Research Project; vide F. No. 39-518/2010 (SR) for carrying out this research work. The authors are thankful to the Sophisticated Instrumentation Centre for Applied Research & Testing (SICART), Vallabh Vidyanagar, Gujarat for XRD of the samples. Thanks are specifically to Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar for EDAX, SEM, and TEM analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Chaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaki, S.H., Tailor, J.P. & Deshpande, M.P. Study of catalytic action of micro-particles and synthesized nanoparticles of CuS on cellulose pyrolysis. J Therm Anal Calorim 117, 1137–1144 (2014). https://doi.org/10.1007/s10973-014-3924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3924-y

Keywords

Navigation