Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 1, pp 145–150 | Cite as

Structural, magnetic, thermodynamic, and transport properties of A-site disordered Nd0.3Sm0.2Sr0.5MnO3

  • N. Kumar Swamy
  • N. Pavan Kumar
  • Manish Gupta
  • S. Sanmukhrao Samatham
  • V. Ganesan
  • Vikas Malik
  • B. K. Das
Article

Abstract

The structural, magnetic, thermodynamic, and transport properties of polycrystalline sample of A-site disordered Nd0.3Sm0.2Sr0.5MnO3 were investigated in an attempt to understand the effect of substitution of Sm over well-studied parent compound Nd0.5Sr0.5MnO3. Samples were prepared by the solid-state ceramic route method and characterized by XRD and standard iodometric titration. DC magnetization of the sample was measured by a SQUID Magnetometer. Electrical resistivity of the sample was measured by the standard four probe method. Results showed that doping with Sm allowed first-order phase transition from ferromagnetic metal to antiferromagnetic insulator state and a charge ordering at 150 K was also observed. Magnetocaloric effect studies were carried out from the specific heat data.

Keywords

Manganites First-order phase transition Charge ordering Magnetocaloric effect 

Notes

Acknowledgements

The authors are grateful to DRDO, Govt. of India for supporting the present research work through a Research project (No. EPR/ER/0803750/M/01/1207). Second author thanks CSIR for providing fellowship. We also thank the Director, UGC-DAE CSR, Indore and Dr. D. Das, Dr S Chatterjee, and Mr P V Rajesh, UGC-DAE CSR, Kolkata, Prof R K Kotnala, Dr Jyoti Shah, NPL, Delhi and Prof D Varshney, DAVV, Indore for their valuable discussions, encouragement, and guidance. We acknowledge the funding of DST, Government of India, for providing funds to the PPMS and MPMS facility at CSR India.

References

  1. 1.
    Rao CNR, Raveau B. Colossal magneto resistance charge ordering and related properties of manganese oxides. 1st ed. Singapore: World Scientific; 1998.CrossRefGoogle Scholar
  2. 2.
    Tokura Y. Colossal magnetoresistive oxides. 1st ed. New York: Gordon and Breach Science; 2000.Google Scholar
  3. 3.
    Zener C. Interaction between the d-shells in the transition metals. Phys Rev B. 1951;82:403.CrossRefGoogle Scholar
  4. 4.
    Mavani KR, Paulose PL. Effects of cation disorder and size on metamagnetism in A-site substituted Pr0.5Ca0.5MnO3 system. Appl Phys Lett. 2005;86:162504.CrossRefGoogle Scholar
  5. 5.
    Wang KF. A-site disorder induced collapse of charge-ordered state and phase separated phase in manganites. App Phys Lett. 2006;89:222505.CrossRefGoogle Scholar
  6. 6.
    Dagotto E. Nanoscale phase separation and colossal magnetoresistance. 1st ed. New York: Springer; 2002.Google Scholar
  7. 7.
    Coey M. Charge-ordering in oxides. Nat Mater. 2004;430:156–7.Google Scholar
  8. 8.
    Martinez LMR, Attfield JP. Cation disorder and size effect in manganese oxide perovskites. Phys Rev B. 1996;54:R15622–5.CrossRefGoogle Scholar
  9. 9.
    Phan MH, Yu SC. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater. 2007;308(2):325–40.CrossRefGoogle Scholar
  10. 10.
    Hamad M. Magnetocaloric properties of La0.6Ca0.4MnO3. J Therm Anal Calorim. 2013;113(2):609–13.CrossRefGoogle Scholar
  11. 11.
    Chau N, Tho ND, Luong NH, Giang BH, Cong BT. Spin glass-like state, charge ordering phase diagram and positive entropy change in Nd0.5−xPrxSr0.5MnO3. J Magn Magn Mater. 2006;303:e402–5.CrossRefGoogle Scholar
  12. 12.
    Mathieu R, Akahoshi D, Asamitsu A, Tomioka Y, Tokura Y. Colossal magnetoresistance without phase separation: disorder-induced spin glass state and nanometer scale orbital-charge correlation in half doped manganites. Phys Rev Lett. 2004;93:227202–4.CrossRefGoogle Scholar
  13. 13.
    Xu M, Hu X, Yu J, Cui X, Zhang S. Magnetoresistance and magnetostriction effect of (La1−xSmx)2/3Sr1/3MnO3 manganites. Solid State Commun. 2008;148:217–20.CrossRefGoogle Scholar
  14. 14.
    Chatterjee S, Giri S, Majumdar S. Metastability and inverse magnetocaloric effect in doped manganite Nd0.25Sm0.25Sr0.5MnO3 and ferromagnetic shape memory alloy Ni2Mn1.36Sn0.64: a comparison. J Phys Condens Matter. 2012;24(36):366001.CrossRefGoogle Scholar
  15. 15.
    Kimura T, Shintani H, Arima T, Takahashi KT, Ishizaka K, Tokura Y. Distorted perovskite with eg1 configuration as a frustrated spin system. Phys Rev B. 2003;68(060403):1–4.Google Scholar
  16. 16.
    Kumar NP, Reddy PV. Specific heat and magnetization studies of RMnO3 (R = Sm, Eu, Gd, Tb and Dy) multiferroics. Phys Scr. 2011;83(045701):1–8.Google Scholar
  17. 17.
    Gordon JE. Specific heat of Nd0.67Sr0.33MnO3. Phys Rev B. 1999;59(1):127–30.CrossRefGoogle Scholar
  18. 18.
    Swamy NK, Kumar NP, Gupta M, Malik V, Das BK. Schottky-like anomaly in the low-temperature specific heat of polycrystalline Y0.3Gd0.2Sr0.5MnO3. Mater Phys Mech. 2013;18:35–41.Google Scholar
  19. 19.
    Cheng JG, Sui Y, Qian ZN, Liu ZG, Miao JP, Huang XQ, Lu Z, Li Y, Wang XJ, Su WH. Schottky-like anomaly in the low-temperature specific heat of single-crystal NdMnO3. Solid State Commun. 2005;134(6):381–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • N. Kumar Swamy
    • 1
    • 2
  • N. Pavan Kumar
    • 3
  • Manish Gupta
    • 1
  • S. Sanmukhrao Samatham
    • 4
  • V. Ganesan
    • 4
  • Vikas Malik
    • 1
  • B. K. Das
    • 1
  1. 1.Material Science Research LabITM UniversityGurgaonIndia
  2. 2.School of Engineering and ResearchITM UniversityNew RaipurIndia
  3. 3.Department of PhysicsOsmania UniversityHyderabadIndia
  4. 4.Low Temperature LabUGC-DAE CSRIndoreIndia

Personalised recommendations