Skip to main content
Log in

Influence of Cu powders on the properties and characteristics of nano-MgO based aluminate cementitious materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

From the perspective of practical application, the development of desirable thermal and mechanical performance of solid sensible materials for thermal energy storage (TES) is highly needed. Here, we report the improved properties of nano-MgO optimized aluminate cementitious materials incorporated with Cu powders for TES. The composite TES materials were heated at 105, 350, and 900 °C, respectively. The results show that as the Cu powders content increases the thermal conductivity and volume heat capacity significantly increase, but there is a gradual decrease in compressive strength. Through the characterizations such as calorimetric test, XRD, FESEM, TG-DSC, and MIP, a significant feature of mass compensation also has been obtained, which might result from the oxidation reaction of the Cu powder at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jamel MS, Abdrahman A, Shamsuddin AH. Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew Sustain Energy Rev. 2013;20:71–81.

    Article  Google Scholar 

  2. Siegel NP. Thermal energy storage for solar power production. Wiley Interdiscip Rev Energy Environ. 2012;1(2):119–31.

    CAS  Google Scholar 

  3. Oró E, Gil A, de Gracia A, Boer D, Cabeza LF. Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renew Energy. 2012;44:166–73.

    Article  Google Scholar 

  4. Cabeza LF, Solé C, Castell A, Oro E, Gil A. Review of solar thermal storage techniques and associated heat transfer technologies. Proc IEEE. 2012;100(2):525–38.

    Article  CAS  Google Scholar 

  5. Roman A. Simulation analysis of thermal storage for concentrating solar power. Appl Therm Eng. 2011;31(16):3588–94.

    Article  Google Scholar 

  6. Laing D, Bahl C, Bauer T, Fiss M, Breidenbach N, Hempel M. High-temperature solid-media thermal energy storage for solar thermal power plants. Proc IEEE. 2012;100(2):516–24.

    Article  Google Scholar 

  7. Navarro ME, Martinez M, Gil A, Fernandez AI, Cabeza LF, Olives R, Py X. Selection and characterization of recycled materials for sensible thermal energy storage. Sol Energy Mater Sol Cells. 2012;107:131–5.

    Article  CAS  Google Scholar 

  8. Wu Z-G, Zhao C-Y. Experimental investigations of porous materials in high temperature thermal energy storage systems. Sol Energy. 2011;85(7):1371–80.

    Article  CAS  Google Scholar 

  9. Khare S, Dell’Amico M, Mcgarry S, Knight C. Selection of materials for high temperature sensible energy storage. Sol Energy Mater Sol Cells. 2013;115:114–22.

    Article  CAS  Google Scholar 

  10. John EE, Hale WM, Selvam RP. Development of a high-performance concrete to store thermal energy for concentrating solar power plants. In: Proceedings of ASME 2011 5th international conference on energy sustainability, ESFuelCell 2011-54177, 7–10 Aug 2011, Washington DC.

  11. John EE, Hale WM, Selvam RP. Effects of high temperatures and heating rate on high strength concrete for use as thermal energy storage. Paper No. ES2010-90096. In: Proceedings of ASME 2010, 4th international conference on energy sustainability ES2010, 17–22 May 2010, Phoenix, AZ.

  12. Pöllmann H. Calcium aluminate cements–raw materials, differences, hydration and properties. Rev Mineral Geochem. 2012;74:1–82.

    Article  Google Scholar 

  13. Yuan H-W, Shi Y, Xu Z–Z, Lu C-H, Ni Y-R, Lan X-H. Influence of nano-ZrO2 on the mechanical and thermal properties of high temperature cementitious thermal energy storage materials. Constr Build Mater. 2013;48:6–10.

    Article  Google Scholar 

  14. Yuan H-W, Shi Y, Lu C-H, Xu Z-Z, Ni Y-R, Lan X-H. Influence of polycarboxylate on thermal properties of cementitious solar thermal storage materials. In: International conference on frontiers of energy and environmental engineering. Taylor & Francis–Balkema, Leiden, pp 89–93.

  15. Ltifi M, Guefrech A, Mounanga P, Khelidj A. Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars. Procedia Eng. 2011;10:900–5.

    Article  CAS  Google Scholar 

  16. Fernández JM, Duran A, Navarro-Blasco I, Lanas J, Sirera R, Alvarez JI. Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance of lime mortars. Cem Concr Res. 2013;43:12–24.

    Article  Google Scholar 

  17. Senff L, Hotza D, Lucas S, Ferreira VM, Labrincha JA. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Mater Sci Eng A. 2012;532:354–61.

    Article  CAS  Google Scholar 

  18. Amin MS, El-Gamal SMA, Hashem FS. Effect of nano-magnetite on the hydration characteristics of hardened Portland cement and high slag cement pastes. J Therm Anal Calorim. 2013;112:1253–9.

    Article  CAS  Google Scholar 

  19. Mo L-W, Panesar DK. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO. Cem Concr Res. 2012;42:769–77.

    Article  CAS  Google Scholar 

  20. Mo L-W, Deng M, Wang A. Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cem Concr Compos. 2012;34:377–83.

    Article  CAS  Google Scholar 

  21. Ye Dalun, Jianhua Hu. The handbook of practical inorganic thermodynamic Data. Beijing: Metallurgic Industry Pres; 2002.

    Google Scholar 

  22. Huiwen Yuan Yu, Shi Zhongzi Xu, et al. Effect of nano-MgO on thermal and mechanical properties of aluminate cement composite thermal energy storage materials. Ceram Int. 2014;40(3):4811–7.

    Article  Google Scholar 

  23. Shin AHC, Kodide U. Thermal conductivity of ternary mixtures for concrete pavements. Cem Concr Compos. 2012;34:575–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Independent Research Topics of State Key Laboratory of Materials-Oriented Chemical Engineering (ZK201211) for Financial Support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Lu or Zhongzi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yuan, H., Lu, C. et al. Influence of Cu powders on the properties and characteristics of nano-MgO based aluminate cementitious materials. J Therm Anal Calorim 117, 1285–1292 (2014). https://doi.org/10.1007/s10973-014-3895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3895-z

Keywords

Navigation