Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 3, pp 1397–1405 | Cite as

The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene

  • Yoshizo Fukuyama
  • Mari Senda
  • Takahiko Kawai
  • Shin-ichi Kuroda
  • Masahito Toyonaga
  • Toshiaki Taniike
  • Minoru Terano


The thermal conductivity of Isotactic polypropylene (iPP)/silica particle (SiO2, 26 nm) nanocomposite has been investigated. The untreated SiO2 and iPP grafted onto SiO2 were dispersed in the iPP (M w = 2.5 × 105) matrix. The molecular mass of the iPP-grafted chain, M n, was precisely controlled to be 5.8 × 103, 1.2 × 104, and 4.6 × 104. It was found that the thermal conductivities of graft-treated nanocomposites were higher than that of untreated SiO2 composites. This implied that it is possible to achieve even higher thermal conductivity using the graft treatment. A thermal conductivity analysis conducted using a three-phase model, with considerations for thermal conductivity at interfacial layers, showed that the thermal conductivity of the interfacial layer increased significantly when a graft chain was incorporated. Moreover, the thermal conductivity per graft chain was proportional to the 1/2 power of the molecular mass (\( M_{\text{n}}^{0.5} \)). The results strongly suggest that the thermal conductivity pathway of interfacial layer was the main chain direction of iPP-grafted molecular chains.


Thermal conductivity Nanocomposites Polypropylene Silica Interfacial layer 



The synchrotron radiation experiments were performed at the BL40B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2013A1343).


  1. 1.
    Mojumdar SC, Raki L. Preparation and properties of calcium silicate hydrate-poly(vinyl alcohol) nanocomposite materials. J Therm Anal Calorim. 2005;82:89–95.CrossRefGoogle Scholar
  2. 2.
    Weidenfeller B, Höfer M, Schilling FR. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos Part A. 2004;35:423–9.CrossRefGoogle Scholar
  3. 3.
    Radhakrishnan S. Effect of thermal conductivity and heat transfer on crystallization, structure, and morphology of polypropylene containing different fillers. J Appl Polym Sci. 2004;93:615–23.CrossRefGoogle Scholar
  4. 4.
    Boudenne A, Ibos L, Fois M, Majesté JC, Géhin E. Electrical and thermal behavior of polypropylene filled with copper particles. Compos Part A. 2005;36:1545–54.CrossRefGoogle Scholar
  5. 5.
    Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Exp Polym Lett. 2011;5:581–90.CrossRefGoogle Scholar
  6. 6.
    Zhou W, Qi S, Li H, Shao S. Study on insulating thermal conductive BN/HDPE composites. Thermo Acta. 2007;452:36–42.CrossRefGoogle Scholar
  7. 7.
    Zhao X, Ye L. Preparation, structure, and property of polyoxymethylene/carbon nanotubes thermal conducive composites. J Polym Sci Part B. 2010;48:905–12.CrossRefGoogle Scholar
  8. 8.
    Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon. 2005;43:1378–85.CrossRefGoogle Scholar
  9. 9.
    Mojumdar SC, Raki L, Mathis N, Schimdt K, Lang S. Thermal, spectral and AFM studies of calcium silicate hydrate-polymer nanocomposite material. J Therm Anal Calorim. 2006;1:119–24.CrossRefGoogle Scholar
  10. 10.
    Guo J, Saha P, Liang J, Saha M, Grady BP. Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composite. J Therm Anal Calorim. 2013;113:467–74.CrossRefGoogle Scholar
  11. 11.
    Fukushima H, Drzal LT, Rook BP, Rich MJ. Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim. 2006;1:235–8.CrossRefGoogle Scholar
  12. 12.
    Lin OH, Akil HM, Ishak CM. Characterization and properties of activated nanosilica/polypropylene composites with coupling agents. Polym Compos. 2009;30:1693–700.CrossRefGoogle Scholar
  13. 13.
    Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X. Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer. 2007;48:1688–94.CrossRefGoogle Scholar
  14. 14.
    Umemori M, Taniike T, Terano M. Influences of polypropylene grafted to SiO2 nanoparticles on the crystallization behavior and mechanical properties of polypropylene/SiO2 nanocomposites. Polym Bull. 2012;68:1093–108.CrossRefGoogle Scholar
  15. 15.
    Fukuyama Y, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2013;113:1511–9.CrossRefGoogle Scholar
  16. 16.
    Taniike T, Toyonaga M, Terano M. Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites. Polymer. 2014;55:1012–9.CrossRefGoogle Scholar
  17. 17.
    Murthy R, Shell CE, Grunlan MA. The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption. Biomaterials. 2009;30:2433–9.CrossRefGoogle Scholar
  18. 18.
    Liu Y, Bo S, Zhu Y, Zhang W. Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer. 2003;44:7209–20.CrossRefGoogle Scholar
  19. 19.
    Yamamoto S, Ejaz M, Tsujii Y, Matsumoto M, Fukuda T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 1. Effect of chain length. Macromolecules. 2000;33:5602–7.CrossRefGoogle Scholar
  20. 20.
    Israelachvili JN. Intermolecular and surface forces. 2nd ed. London: Academic; 1992.Google Scholar
  21. 21.
    Zhou R, Burkhart T. Polypropylene/SiO2 nanocomposites filled with different nanosilicas: thermal and mechanical properties, morphology and interphase characterization. J Mater Sci. 2011;46:1228–38.CrossRefGoogle Scholar
  22. 22.
    Chen L, Zheng K, Tian X, Hu K, Wang R, Liu C, Li Y, Cui P. Double glass transitions and interfacial immobilized layer in in situ-synthesized poly(vinyl alcohol)/silica nanocomposites. Macromolecules. 2010;43:1076–82.CrossRefGoogle Scholar
  23. 23.
    Sumita M, Tsukihi H, Miyasaka K, Ishikawa K. Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. J Appl Polym Sci. 1984;29:1523–30.CrossRefGoogle Scholar
  24. 24.
    Freeman JJ, Anderson AC. Thermal conductivity of amorphous solid. Phys Rev B. 1986;34:5684–90.CrossRefGoogle Scholar
  25. 25.
    Wilkinson RW, Dole M. Specific heat of synthetic high polymers. X. Isotactic and atactic polypropylene. J Polym Sci. 1962;58:1089–106.CrossRefGoogle Scholar
  26. 26.
    Wang ZL, Tang DW, Liu S, Zhang XH. Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport. Int J Thermophys. 2007;28:1255–68.CrossRefGoogle Scholar
  27. 27.
    Cezairliyan A, Baba T, Tayor R. A high-temperature laser-plus thermal diffusivity apparatus. Int J Thermophys. 1994;15(2):343–64.CrossRefGoogle Scholar
  28. 28.
    Eucken A. Die warmeleitfahigkeit keramischer feuerfester stoffe; Ihre berechnung aus der warmeleitfahigkeit der betstandteile (Thermal conductivity of ceramic refractory materials, its calculation from the thermal conductivity of constituents). Fortchg Gebiete Ingenieurw B3 Forschungsheft. 1932;16:353–360.Google Scholar
  29. 29.
    Leong KC, Yang C, Murshed SS. A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res. 2006;8:245–54.CrossRefGoogle Scholar
  30. 30.
    Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74:3396–403.CrossRefGoogle Scholar
  31. 31.
    Chowdhury B, Mojumdar SC. Aspects of thermal conductivity relative to heat flow. J Therm Anal Calorim. 2005;81:179–82.CrossRefGoogle Scholar
  32. 32.
    Choy CL, Chen FC, Luk WH. Thermal conductivity of oriented crystalline polymers. J Polym Sci Polym Phys Edi. 1980;18:1187–207.Google Scholar
  33. 33.
    Hansen D, Ho CC. Thermal conductivity of high polymers. J Polym Sci Part A. 1965;3:659–70.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Yoshizo Fukuyama
    • 1
    • 2
  • Mari Senda
    • 2
  • Takahiko Kawai
    • 2
  • Shin-ichi Kuroda
    • 2
  • Masahito Toyonaga
    • 3
  • Toshiaki Taniike
    • 3
  • Minoru Terano
    • 3
  1. 1.Sawafuji Electric Co., LtdOtaJapan
  2. 2.Department of Production Science and Technology, Graduate School of EngineeringGunma UniversityOtaJapan
  3. 3.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations