Skip to main content
Log in

The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal conductivity of Isotactic polypropylene (iPP)/silica particle (SiO2, 26 nm) nanocomposite has been investigated. The untreated SiO2 and iPP grafted onto SiO2 were dispersed in the iPP (M w = 2.5 × 105) matrix. The molecular mass of the iPP-grafted chain, M n, was precisely controlled to be 5.8 × 103, 1.2 × 104, and 4.6 × 104. It was found that the thermal conductivities of graft-treated nanocomposites were higher than that of untreated SiO2 composites. This implied that it is possible to achieve even higher thermal conductivity using the graft treatment. A thermal conductivity analysis conducted using a three-phase model, with considerations for thermal conductivity at interfacial layers, showed that the thermal conductivity of the interfacial layer increased significantly when a graft chain was incorporated. Moreover, the thermal conductivity per graft chain was proportional to the 1/2 power of the molecular mass (\( M_{\text{n}}^{0.5} \)). The results strongly suggest that the thermal conductivity pathway of interfacial layer was the main chain direction of iPP-grafted molecular chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mojumdar SC, Raki L. Preparation and properties of calcium silicate hydrate-poly(vinyl alcohol) nanocomposite materials. J Therm Anal Calorim. 2005;82:89–95.

    Article  CAS  Google Scholar 

  2. Weidenfeller B, Höfer M, Schilling FR. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos Part A. 2004;35:423–9.

    Article  Google Scholar 

  3. Radhakrishnan S. Effect of thermal conductivity and heat transfer on crystallization, structure, and morphology of polypropylene containing different fillers. J Appl Polym Sci. 2004;93:615–23.

    Article  CAS  Google Scholar 

  4. Boudenne A, Ibos L, Fois M, Majesté JC, Géhin E. Electrical and thermal behavior of polypropylene filled with copper particles. Compos Part A. 2005;36:1545–54.

    Article  Google Scholar 

  5. Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Exp Polym Lett. 2011;5:581–90.

    Article  CAS  Google Scholar 

  6. Zhou W, Qi S, Li H, Shao S. Study on insulating thermal conductive BN/HDPE composites. Thermo Acta. 2007;452:36–42.

    Article  CAS  Google Scholar 

  7. Zhao X, Ye L. Preparation, structure, and property of polyoxymethylene/carbon nanotubes thermal conducive composites. J Polym Sci Part B. 2010;48:905–12.

    Article  CAS  Google Scholar 

  8. Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon. 2005;43:1378–85.

    Article  CAS  Google Scholar 

  9. Mojumdar SC, Raki L, Mathis N, Schimdt K, Lang S. Thermal, spectral and AFM studies of calcium silicate hydrate-polymer nanocomposite material. J Therm Anal Calorim. 2006;1:119–24.

    Article  Google Scholar 

  10. Guo J, Saha P, Liang J, Saha M, Grady BP. Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composite. J Therm Anal Calorim. 2013;113:467–74.

    Article  CAS  Google Scholar 

  11. Fukushima H, Drzal LT, Rook BP, Rich MJ. Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim. 2006;1:235–8.

    Article  Google Scholar 

  12. Lin OH, Akil HM, Ishak CM. Characterization and properties of activated nanosilica/polypropylene composites with coupling agents. Polym Compos. 2009;30:1693–700.

    Article  CAS  Google Scholar 

  13. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X. Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer. 2007;48:1688–94.

    Article  CAS  Google Scholar 

  14. Umemori M, Taniike T, Terano M. Influences of polypropylene grafted to SiO2 nanoparticles on the crystallization behavior and mechanical properties of polypropylene/SiO2 nanocomposites. Polym Bull. 2012;68:1093–108.

    Article  CAS  Google Scholar 

  15. Fukuyama Y, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2013;113:1511–9.

    Article  CAS  Google Scholar 

  16. Taniike T, Toyonaga M, Terano M. Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites. Polymer. 2014;55:1012–9.

    Article  CAS  Google Scholar 

  17. Murthy R, Shell CE, Grunlan MA. The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption. Biomaterials. 2009;30:2433–9.

    Article  CAS  Google Scholar 

  18. Liu Y, Bo S, Zhu Y, Zhang W. Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer. 2003;44:7209–20.

    Article  CAS  Google Scholar 

  19. Yamamoto S, Ejaz M, Tsujii Y, Matsumoto M, Fukuda T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 1. Effect of chain length. Macromolecules. 2000;33:5602–7.

    Article  CAS  Google Scholar 

  20. Israelachvili JN. Intermolecular and surface forces. 2nd ed. London: Academic; 1992.

    Google Scholar 

  21. Zhou R, Burkhart T. Polypropylene/SiO2 nanocomposites filled with different nanosilicas: thermal and mechanical properties, morphology and interphase characterization. J Mater Sci. 2011;46:1228–38.

    Article  CAS  Google Scholar 

  22. Chen L, Zheng K, Tian X, Hu K, Wang R, Liu C, Li Y, Cui P. Double glass transitions and interfacial immobilized layer in in situ-synthesized poly(vinyl alcohol)/silica nanocomposites. Macromolecules. 2010;43:1076–82.

    Article  CAS  Google Scholar 

  23. Sumita M, Tsukihi H, Miyasaka K, Ishikawa K. Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. J Appl Polym Sci. 1984;29:1523–30.

    Article  CAS  Google Scholar 

  24. Freeman JJ, Anderson AC. Thermal conductivity of amorphous solid. Phys Rev B. 1986;34:5684–90.

    Article  CAS  Google Scholar 

  25. Wilkinson RW, Dole M. Specific heat of synthetic high polymers. X. Isotactic and atactic polypropylene. J Polym Sci. 1962;58:1089–106.

    Article  CAS  Google Scholar 

  26. Wang ZL, Tang DW, Liu S, Zhang XH. Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport. Int J Thermophys. 2007;28:1255–68.

    Article  CAS  Google Scholar 

  27. Cezairliyan A, Baba T, Tayor R. A high-temperature laser-plus thermal diffusivity apparatus. Int J Thermophys. 1994;15(2):343–64.

    Article  Google Scholar 

  28. Eucken A. Die warmeleitfahigkeit keramischer feuerfester stoffe; Ihre berechnung aus der warmeleitfahigkeit der betstandteile (Thermal conductivity of ceramic refractory materials, its calculation from the thermal conductivity of constituents). Fortchg Gebiete Ingenieurw B3 Forschungsheft. 1932;16:353–360.

  29. Leong KC, Yang C, Murshed SS. A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res. 2006;8:245–54.

    Article  CAS  Google Scholar 

  30. Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74:3396–403.

    Article  CAS  Google Scholar 

  31. Chowdhury B, Mojumdar SC. Aspects of thermal conductivity relative to heat flow. J Therm Anal Calorim. 2005;81:179–82.

    Article  CAS  Google Scholar 

  32. Choy CL, Chen FC, Luk WH. Thermal conductivity of oriented crystalline polymers. J Polym Sci Polym Phys Edi. 1980;18:1187–207.

    CAS  Google Scholar 

  33. Hansen D, Ho CC. Thermal conductivity of high polymers. J Polym Sci Part A. 1965;3:659–70.

    CAS  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at the BL40B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2013A1343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Kawai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuyama, Y., Senda, M., Kawai, T. et al. The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene. J Therm Anal Calorim 117, 1397–1405 (2014). https://doi.org/10.1007/s10973-014-3881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3881-5

Keywords

Navigation