Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 3, pp 1335–1340 | Cite as

Molar heat capacities and standard molar enthalpy of formation of pyrimethanil butanedioic salt

  • Meihan Wang
  • Hao Lei
  • Jun Zhang
  • Zhaoxia Hou
  • Yoshiyuki Seki
  • Yutaka Sawada
  • Shaohong Wang
Article

Abstract

A noval anilino-pyrimidine fungicide, pyrimethanil butanedioic salt (C28H32N6O4), was synthesized by a chemical reaction of pyrimethanil and butanedioic acid. The low-temperature heat capacities of the compound were measured with an adiabatic calorimeter from 80 to 380 K. The thermodynamic function data relative to 298.15 K were calculated based on the heat capacity fitted curve. The thermal stability of the compound was investigated by TG and DSC. The TG curve shows that pyrimethanil butanedioic salt starts to sublimate at 455.1 K and totally changes into vapor when the temperature reaches 542.5 K with the maximal speed of weight loss at 536.8 K. The melting point, the molar enthalpy (Δfus H m), and entropy (Δfus S m) of fusion were determined from its DSC curves. The constant-volume energy of combustion (Δc U m) of pyrimethanil butanedioic salt was measured by an isoperibol oxygen-bomb combustion calorimeter at T = (298.15 ± 0.001) K. From the Hess thermochemical cycle, the standard molar enthalpy of formation was derived and determined to be Δf H m o (pyrimethanil butanedioic salt)=−285.4 ± 5.5 kJ mol−1.

Keywords

Pyrimethanil butanedioic salt Heat capacity Thermodynamic functions Standard molar enthalpy of formation 

Notes

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China for financial support to this work under the NSFC Grant No. 51302175.

References

  1. 1.
    Wang HF, Gong JY, Sun XH, Liu YF, Cheng XY. Synthesis of pyrimethanil salts and test of their fungicidal activities. Chin J Synth Chem. 2005;13(3):231–5.Google Scholar
  2. 2.
    Guan GY, Fukuoka S, Yamashita S, Yamamoto T, Taniguchi H, Nakazawa Y. Magnetic transition in dimerized radical cation salt of (BPDT-TTF)2ICl2 studied by heat capacity measurements. J Therm Anal Calorim. 2013;113:1197–201.CrossRefGoogle Scholar
  3. 3.
    Atanasova L, Baikusheva-Dimitrova G. Heat capacity and thermodynamic properties of tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3. J Therm Anal Calorim. 2012;107:809–12.CrossRefGoogle Scholar
  4. 4.
    Paukov IE, Kovalevskaya YA, Boldyreva EV. Low-temperature heat capacity of L- and DL-phenylglycines. J Therm Anal Calorim. 2012;108:1311–6.CrossRefGoogle Scholar
  5. 5.
    Rawat D, Dash S. The standard molar enthalpy of formation of LnPO4(s) (Ln = La, Nd, Sm) by solution calorimetry. J Therm Anal Calorim. 2013;112:147–54.CrossRefGoogle Scholar
  6. 6.
    Han XW, Zhou CR, Shi XH. Determination of specific heat capacity and standard molar combustion enthalpy of taurine by DSC. J Therm Anal Calorim. 2012;109:441–6.CrossRefGoogle Scholar
  7. 7.
    Wang MH, Lei H, Hou ZX, Wang SH. Heat capacities and standard molar enthalpy of formation of pyrimethanil maleic salt and pyrimethanil fumaric salt. J Therm Anal Calorim. 2013;114:313–9.CrossRefGoogle Scholar
  8. 8.
    Wang MH, Tan ZC, Sun XH, Liu YF, Wang HF, Sun LX, Zhang T. Heat capacity and thermodynamic properties of pyrimethanil myristic salt (C26H41N3O2). J Chem Thermodyn. 2004;36:477–82.CrossRefGoogle Scholar
  9. 9.
    Sun XH, Liu YF, Tan ZC, Di YY, Wang HF, Wang MH. Heat capacity and enthalpy of fusion of pyrimethanil laurate (C24H37N3O2). J Chem Thermodyn. 2004;36:895–9.CrossRefGoogle Scholar
  10. 10.
    Sun XH, Liu YF, Tan ZC, Jia YQ, Wang MH. Heat capacity and thermodynamic properties of crystalline pyrimethanil phenoxyacetate(C20H21N3O3). Chem J Chinese U. 2006;27(6):1109–12.Google Scholar
  11. 11.
    Wang MH, Tan ZC, Sun XH, Zhang HT, Liu BP, Sun LX, Zhang T. Determination of heat capacities and thermodynamic properties of 2-(chloromethylthio)benzothiazole by an adiabatic calorimeter. J Chem Eng Data. 2005;50(1):270–3.CrossRefGoogle Scholar
  12. 12.
    Tan ZC, Shi Q, Liu BP, Zhang HT. A fully automated adiabatic calorimeter for heat capacity measurement between 80 and 400 K. J Therm Anal Calorim. 2008;92:367–74.CrossRefGoogle Scholar
  13. 13.
    Archer DG. Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Data. 1993;22:1441–53.Google Scholar
  14. 14.
    Höhne GWH, Hemminger WF, Flammersheim HJ. Differential Scanning Calorimetry. 2nd ed. New York: Springer-Verlag; 2003.CrossRefGoogle Scholar
  15. 15.
    Chen JT, Di YY, Tan ZC, Zhang HT, Sun LX. Determination of standard molar enthalpy of formation for crystalline endo-tricyclo[5.2.1.02,6] decane by isoperibal oxygen-bomb combustion calorimeter. Chem Pap. 2005;59(4):225–9.Google Scholar
  16. 16.
    Silva ALR, Cimas Á. Ribeiro da Silva MDMC. Thermochemistry of 2-methylbenzoxazole and 2,5-dimethylbenzoxazole: an experimental and computational study. Struct Chem. 2013;24:1863–72.CrossRefGoogle Scholar
  17. 17.
    Report of the CODATA task group on key values for thermodynamics. J Chem Thermodyn. 1978; 10: 903-906.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Meihan Wang
    • 1
  • Hao Lei
    • 2
  • Jun Zhang
    • 1
  • Zhaoxia Hou
    • 1
  • Yoshiyuki Seki
    • 3
  • Yutaka Sawada
    • 3
  • Shaohong Wang
    • 1
  1. 1.School of Mechanical EngineeringShenyang UniversityShenyangChina
  2. 2.State Key Laboratory for Corrosion and Protection, Surface Engineering of Materials Division, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.Center for Hyper Media ResearchTokyo Polytechnic UniversityKanagawaJapan

Personalised recommendations