Skip to main content
Log in

Synthesis and characterization of nickel cobalt zinc ferrous hydrazine fumarate

A single source precursor to nanocrystalline Ni0.4Co0.2Zn0.4Fe2O4

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrazinated nickel cobalt zinc ferrous fumarate precursor has been synthesized and decomposed autocatalytically to Ni0.4Co0.2Zn0.4Fe2O4. The thermal decomposition behavior of the precursor has been investigated by thermogravimetric (TG) and differential thermal analysis (DTA). The chemical composition was assigned to precursor based on chemical analysis, TG–DTA, infrared (IR), isothermal mass loss, and total mass loss studies. The X-ray powder diffraction of the decomposed precursor confirms the formation of monophasic nickel cobalt zinc ferrite, and IR spectrum exhibits two peaks in the region of 340–420 and 550–660 cm−1 characteristic of spinel ferrites. The average grain size evaluated by TEM is found to be 15–20 nm. The electrical DC resistivity measurement was carried out with respect to temperature using two-probe method and dielectric properties as a function of frequency. The high dielectric constant values found at lower frequencies were due to nanosize nature of the “as prepared” ferrite. The Curie temperature of the “as-prepared” Ni0.4Co0.2Zn0.4Fe2O4 determined by alternating current susceptibility measurements was found to be 380 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mathur P, Thakur A, Lee JH, Singh M. Sustained electromagnetic properties of Ni–Zn–Co nanoferrites for the high frequency applications. Mater Lett. 2010;64:2738–41.

    Article  CAS  Google Scholar 

  2. Xie JL, Han M, Chen L, Kuang R, Deng L. Microwave absorbing properties of NiCoZn spinel ferrites. J Magn Magn Mater. 2007;314:37–42.

    Article  CAS  Google Scholar 

  3. Xiang S, Yan-xin W, Xiang Y, Yong X, Jian-feng Z, Pie-duo T. Megahertz magneto-dielectric properties of nanosized NiZnCo ferrite from CTAB-assisted hydrothermal process. Trans Nonferr Met Soc China. 2009;19:1588–92.

    Article  Google Scholar 

  4. Mukherjee K, Majumder SB. Hydrogen gas sensing characteristics of wet chemical synthesized tailored Mg0.5Zn0.5Fe2O4 nanostructures. Nanotechnology. 2010;21:255504–255509.

  5. Gawas UB, Verenkar VMS, Patil DR. Nanostructured ferrite based electronic nose sensitive to ammonia at room temperature. Sens Trans. 2011;134:45–55.

    CAS  Google Scholar 

  6. Khan A, Smirniotis PG. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction. J Mol Catal A. 2008;280:43–51.

    Article  CAS  Google Scholar 

  7. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D. 2003;36:167–81.

    Article  Google Scholar 

  8. Singh N, Agarwal A, Sanghi S, Singh P. Effect of magnesium substitution on dielectric and magnetic properties of Ni–Zn ferrites. Physica B. 2011;406:687–92.

    Article  CAS  Google Scholar 

  9. Zahi S, Hashim M, Daud AR. Synthesis, magnetic properties and microstructure of Ni–Zn ferrites. J Magn Magn Mater. 2007;308(2):177–82.

    Article  CAS  Google Scholar 

  10. Nasir S, Anis-Ur-Rehman M. Structural, electrical and magnetic studies of nickel–zinc nanoferrites prepared by simplified sol–gel and co-precipitation methods. Phys Scr. 2011;84:025603–025609.

    Article  Google Scholar 

  11. Gul IH, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrites synthesis by co-precipitation route. J Magn Magn Mater. 2008;320:270–5.

    Article  CAS  Google Scholar 

  12. Prakash AS, Khadar AMA, Patil KC, Hegde MS. Hexamethylenetetramine: a new fuel for solution combustion synthesis of complex metal oxide. J Magn Magn Mater. 2002;10:135–41.

    CAS  Google Scholar 

  13. Mallapur MM, Chougule BK. Synthesis, characterization and magnetic properties of nanocrystalline Ni–Zn–Co ferrites. Mater Lett. 2010;64:231–4.

    Article  CAS  Google Scholar 

  14. Priyadharsini P, Pradeep A, Chandrasekaran G. Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn. J Magn Magn Mater. 2009;321:1898–903.

    Article  CAS  Google Scholar 

  15. Li X, Wang G. Low temperature synthesis and growth of superparamagnetic Zn0.5Ni0.5Fe2O4 nanosized particle. J Magn Magn Mater. 2009;32:1276–9.

    Article  Google Scholar 

  16. Sarangi PP, Vadera SR, Patra MK, Ghosh NN. Synthesis and characterization of pure single phase Ni–Zn ferrite nanoparticles by oxalate precursor method. Powder Technol. 2010;203:348–53.

    Article  CAS  Google Scholar 

  17. Verma A, Goel TC, Mendirtta RG, Kishan P. Magnetic properties of nickel zinc ferrite prepared by the citrate precursor method. J Magn Magn Mater. 2000;208(1):13–9.

    Article  CAS  Google Scholar 

  18. Yasodhai S, Govindarajan S. Hydrazinium oxydiacetates and oxyacetate dianion complexes of some divalent metals with hydrazine. J Therm Anal Calorim. 2000;62:737–45.

    Article  CAS  Google Scholar 

  19. Ravindranathan P, Patil KC. Thermal reactivity of metal formate hydrazinates. Thermochim Acta. 1983;71:53–7.

    Article  CAS  Google Scholar 

  20. Jordanovska V, Trajko R. Synthesis, characterization and mode of thermal decomposition of oxalate complexes of cadmium(II), and zinc(II) with hydrazine and cobalt(II), nickel(II) and copper(II) with hydrazinium cation. Thermochim Acta. 1995;258:205–17.

    Article  CAS  Google Scholar 

  21. Sivasankar BN, Govindarajan S. Studies on bis(hydrazine)metal malonates and succinates. Synth React Inorg Met Org Chem. 1994;24:1573–82.

    Article  CAS  Google Scholar 

  22. Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, DSC and infra-red spectral study of NiMn2(C4H4O4)3·6N2H4. A precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86:605–8.

    Article  CAS  Google Scholar 

  23. Sivasankar BN, Govindarajan S. Hydrazine mixed metal malonates—new precursors for metal cobaltites. Mater Res Bull. 1996;31(1):47–54.

    Article  CAS  Google Scholar 

  24. Rane KS, Verenkar VMS. Synthesis of ferrite grade γ−Fe2O4. Bull Mater Sci. 2001;24(1):39–45.

  25. Govindarajan S, Nasrinbanu SU, Saravanan N, Sivasankar B. Bis-hydrazine metal maleates and fumarates: preparation, spectral and thermal studies. Proc Indian Acad Sci (Chem Sci). 1995;107(5):559–65.

    CAS  Google Scholar 

  26. Brian TH, Jacob C, Page P. Transition metal complexes containing hydrazine and substituted hydrazines. Coord Chem Rev. 1996;154:193–229.

    Article  Google Scholar 

  27. Premkumar T, Govindarajan S. The chemistry of hydrazine derivatives—thermal behaviour and characterization of hydrazinium salts and metal hydrazine complexes of 4,5-imidazoledicarboxylic acid. Thermochim Acta. 2002;386:35–42.

    Article  CAS  Google Scholar 

  28. Patil KC. Metal hydrazine complexes as precursor to oxide materials. Proc Indian Acad Sci. (Chem Sci). 1986;96(6):459–64.

    Article  CAS  Google Scholar 

  29. Braibanti A, Dallavalle F, Pallinghelli MA, Leoporati E. The nitrogen–nitrogen stretching band in hydrazine derivative and complexes. Inorg Chem. 1968;7:1430–3.

    Article  CAS  Google Scholar 

  30. Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90(3):669–72.

    Article  CAS  Google Scholar 

  31. Gawas UB, Verenkar VMS, Mojumdar SC. Synthesis and characterization of Ni0.6Zn0.4Fe2O4 nano-particles obtained by autocatalytic thermal decomposition of carboxylato–hydrazinate complex. J Therm Anal Calorim. 2011;104:879–83.

    Article  CAS  Google Scholar 

  32. Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim. 2011;104:869–73.

    Article  CAS  Google Scholar 

  33. Gawas UB, Verenkar VMS, Mojumdar SC. Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method. Synthesis, characterization and studies of magnetic and electrical properties. J Therm Anal Calorim. 2012;108:865–70.

    Article  CAS  Google Scholar 

  34. Gonsalves LR, Verenkar VMS. Synthesis and thermal studies of the cobalt zinc ferrous fumarato-hydrazinate: a precursor to obtain nanosize ferrites. J Therm Anal Calorim. 2012;108:871–5.

    Article  CAS  Google Scholar 

  35. Sawant SY, Kannan KR, Verenkar VMS. Synthesis, characterization and thermal analysis of nickel manganese fumarato-hydrazinate. In: Pillai CGS, Ramakumar KL, Ravindran PV, Venugopal V, editors. Proceedings of the 13th national symposium on thermal analysis, B.A.R.C. Mumbai: Indian Thermal Analysis Society; 2002. p 154–5.

  36. Jeffery GH, Bassett J, Mendham J, Denney RC. Vogel’s textbook of quantitative inorganic analysis. 5th ed. Harlow: Longman; 1989.

    Google Scholar 

  37. Likhite SD, Radhakrishnamurthy C. Initial susceptibility and constricted Rayleigh loops of some basalts. Curr Sci. 1966;35:534–6.

    CAS  Google Scholar 

  38. Vairan S, Premkumar T, Govindarajan S. Preparation and thermal behavior of divalent transition metal complexes of pyromellitic acid with hydrazine. J Therm Anal Calorim. 2010;101:979–85.

    Article  Google Scholar 

  39. Amer MA, Tawfik A, Mostafa AG, El-Shora AF, Zaki SM. Spectra studies of Co substituted Ni–Zn ferrites. J Magn Magn Mater. 2011;323:1445–52.

    Article  CAS  Google Scholar 

  40. Sharma S, Verma K, Chaubey U, Singh V, Mehta BR. Influence of Zn substitution on structural, microstructural and dielectric properties of nanocrystalline nickel ferrites. Mater Sci Eng B. 2010;167:187–92.

    Article  CAS  Google Scholar 

  41. Chaudikar ND, Kambale RC, Bhosale DN, Suryavanshi SS, Sawant SR. Thermal hysteresis and domain states in Ni–Zn ferrites synthesized by oxalate precursor method. J Magn Magn Mater. 2010;322:1999–2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawas, S.G., Verenkar, V.M.S. & Mojumdar, S.C. Synthesis and characterization of nickel cobalt zinc ferrous hydrazine fumarate. J Therm Anal Calorim 119, 825–830 (2015). https://doi.org/10.1007/s10973-014-3850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3850-z

Keywords

Navigation