Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 857–866 | Cite as

Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane

  • Xilei Chen
  • Yufeng Jiang
  • Chuanmei Jiao
Article

Abstract

It is mainly studied that the smoke-suppression properties and synergistic flame-retardant effect of hollow glass microsphere (HM) in flame retardant thermoplastic polyurethane (TPU) composites based on ammonium polyphosphate (APP) as a flame-retardant. Also, the smoke suppression properties and flame-retardant effect were investigated by smoke density test (SDT), cone calorimeter test (CCT), limiting oxygen index, and thermogravimetric analysis, separately. The char residues left after CCT were examined by scanning electron microscopy. The data of SDT shows that HM could effectively decrease smoke production of TPU composites. The results of CCT reveal that the system of APP/HM could reduce heat release rate, smoke production rate, and total smoke release. It is shown that APP/HM is a good system with smoke-suppression and synergistic flame-retardant properties in flame-retardant TPU composites.

Keywords

Smoke suppression Flame retardancy Hollow glass microsphere Thermoplastic polyurethane Ammonium polyphosphate 

Notes

Acknowledgements

The authors gratefully acknowledge the supports received from the National Natural Science Foundation of China (No. 51106078, No. 51206084), and the Out-standing Young Scientist Research Award Fund from Shandong Province (BS2011CL018).

References

  1. 1.
    Ainara S, Lorena R, Borja FA, Inaki M, Arantxa E, Angeles C. Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym Int. 2013;62:106–15.CrossRefGoogle Scholar
  2. 2.
    Pielichowski K, Leszczynska A. TG-FTIR study of the thermal degradation of polyoxymethylene (POM)/thermoplastic polyurethane (TPU) blends. J Therm Anal Calorim. 2004;78:631–7.CrossRefGoogle Scholar
  3. 3.
    Chen PH, Yang YF, Lee DH, Lin YF, Wang HH, Tsai HB, Tsai RS. Synthesis and properties of transparent thermoplastic segmented polyurethanes. Adv Polym Technol. 2007;26(1):33–40.CrossRefGoogle Scholar
  4. 4.
    Barick AK, Tripathy DK. Nanostructure morphology and dynamic rheological properties of nanocomposites based on thermoplastic polyurethane and organically modified montmorillonite. Polym Bull. 2011;66:1231–53.CrossRefGoogle Scholar
  5. 5.
    Zhao KM, Xu WZ, Song L, Wang BB, Feng H, Hu Y. Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polym Adv Technol. 2012;23:894–900.CrossRefGoogle Scholar
  6. 6.
    Kang SH, Ku DC, Lim JH, Yang YK, Kwak NS, Hwang TS. Characterization for pyrolysis of thermoplastic polyurethane by thermal analyses. Polym Soc Korea. 2005;13:212–7.Google Scholar
  7. 7.
    Zhang Q, Chen YH. Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene. J Polym Res. 2011;18:293–303.CrossRefGoogle Scholar
  8. 8.
    Wang JC, Yang K, Zheng XY. Studies on the effect of 4A zeolite on the properties of intumescent flame-retardant agent filled natural rubber composites. J Polym Res. 2009;16:427–36.CrossRefGoogle Scholar
  9. 9.
    Wang JH, Liang GZ, He SB, Yang LL. Curing behavior and mechanical properties of hollow glass microsphere/bisphenol a dicyanate ester composites. J Appl Polym Sci. 2010;118:1252–6.Google Scholar
  10. 10.
    Tryana VG, Masami N. On a hybrid method to characterize the mechanical behavior of thin hollow glass microspheres. Granular Matter. 2012;14:309–18.CrossRefGoogle Scholar
  11. 11.
    Zou YK, Zhan YQ, Zhao R, Liu XB. Low dielectric permittivity and high thermal stability composites based on crosslinkable poly (arylene ether nitrile) and hollow glass microsphere. J Mater Sci-Mater Elem. 2013;24:1238–42.CrossRefGoogle Scholar
  12. 12.
    Bian XC, Tang JH, Li ZM. Flame retardancy of hollow glass microsphere/rigid polyurethane foams in the presence of expandable graphite. J Appl Polym Sci. 2008;109:1935–43.CrossRefGoogle Scholar
  13. 13.
    Wang XY, Li Y, Liao WW, Gu J, Li D. A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polym Adv Technol. 2008;19:1055–61.CrossRefGoogle Scholar
  14. 14.
    Chen XL, Jiao CM. Flammability and thermal degradation of epoxy acrylate modified with phosphorus-containing compounds. Polym Adv Technol. 2010;21:490–5.Google Scholar
  15. 15.
    Park WH, Yoon KB. Optimization of pyrolysis properties using TGA and cone calorimeter test. J Therm Sci. 2013;22(2):168–73.CrossRefGoogle Scholar
  16. 16.
    Daisuke K, Katsushi K, Mariko I, Satoshi K, Takahiro Y. Evaluation of combustion properties of wood pellets using a cone calorimeter. J Wood Sci. 2009;55:453–7.CrossRefGoogle Scholar
  17. 17.
    Chen XL, Jiao CM. Flame retardancy and thermal degradation of intumescent flame retardant polypropylene material. Polym Adv Technol. 2011;22:817–21.CrossRefGoogle Scholar
  18. 18.
    Jiao CM, Chen XL. Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci. 2010;10:767–72.CrossRefGoogle Scholar
  19. 19.
    Schartel B, Hull TR. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.CrossRefGoogle Scholar
  20. 20.
    Lin M, Li B, Li QF, Li S, Zhang SQ. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci. 2011;121:1951–60.CrossRefGoogle Scholar
  21. 21.
    Almeras X, Le Bras M, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stabil. 2003;82:325–31.CrossRefGoogle Scholar
  22. 22.
    Dong YY, Gui Z, Hu Y, Wu Y, Jiang SH. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly(methyl methacrylate). J Hazard Mater. 2012;209:34–9.CrossRefGoogle Scholar
  23. 23.
    Carty P, Creighton J, White S. TG and flammability studies on polymer blends containing acrylonitrile-butadiene-styrene and chlorinated poly(vinyl chloride). J Therm Anal Calorim. 2001;63:679–87.CrossRefGoogle Scholar
  24. 24.
    Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36:203–15.CrossRefGoogle Scholar
  25. 25.
    Dias DS, Marisa SC, Kobelnik M, Ribeiro CA. Calorimetric and SEM studies of PHB–PET polymeric blends. J Therm Anal Calorim. 2009;97:581–4.CrossRefGoogle Scholar
  26. 26.
    Jiao CM, Chen XL, Zhang J. Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites. J Fire Sci. 2009;27:465–79.CrossRefGoogle Scholar
  27. 27.
    Fang SL, Hu Y, Song L, Zhan J, He QL. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci. 2008;43:1057–62.CrossRefGoogle Scholar
  28. 28.
    Cecen V. Thermophysical properties of composites formed from ethylene-vinyl acetate copolymer and silver-coated hollow glass microspheres. J Appl Polym Sci. 2011;122:685–97.CrossRefGoogle Scholar
  29. 29.
    Murugasamy K, Bhagawan SS, Sabu T, Kuruvilla J. Thermogravimetric analysis and differential scanning calorimetric studies on nanoclay-filled TPU/PP blends. J Therm Anal Calorim. 2013;112:1231–44.CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Chen XL, Fang ZP. Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. J Appl Polym Sci. 2013;10:2424–32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations