Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 557–566 | Cite as

Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage

  • E. M. Anghel
  • A. Georgiev
  • S. Petrescu
  • R. Popov
  • M. Constantinescu


Three phase change paraffinic materials (PCMs) were thermophysically (phase-transition temperatures, latent heat, heat capacity at constant pressure, density, and thermal conductivity) investigated in order to be used as latent heat storage media in a pilot plant developed in Plovdiv Bulgaria. Raman structural investigation probes aliphatic character of the E53 sample, while the E46 and ECP samples contain also unsaturated components due to their Raman features within 1,500–1,700 cm−1 range. Orthorhombic structure of the three PCMs was evidenced by the Raman modes at the 1,417 cm−1. The highest latent heat value, ΔH, of phase transitions among the three materials was represented by summation of a solid order–disorder, and melting latent heat was encountered by the E53 paraffin, i.e., 194.32 J g−1 during a μ-DSC scan of 1 °C min−1. Conversely, the ECP composite containing ceresin component shows the lowest latent heat value of 143.89 J g−1 and the highest thermal conductivity of 0.46 W m−1 K−1 among the three phase change materials (PCMs). More facile melt-disordered solid transition with the activation energy of 525.45 kJ mol−1 than the lower temperature transition of disorder–order (E a of 631.73 kJ mol−1) during the two-step process of solidification for the E53 melt are discussed in terms of structural and molecular motion changes.


Latent heat storage Phase change material Raman spectroscopy DSC Paraffin Composite 



Partially support of the EU (ERDF) and Romanian Government that allowed for acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM - Nr. 19/01.03.2009, and Bulgarian research project 102ni063-24/05.05.2010 of the Technical University of Sofia, is gratefully acknowledged. Results were presented in frame of COST Action TU0802 NeCoE-PCM.


  1. 1.
    Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111:279–88.CrossRefGoogle Scholar
  2. 2.
    Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45(9–10):1597–615.CrossRefGoogle Scholar
  3. 3.
    Jeon J, Jeong SG, Lee JH, Seo J, Kim S. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Sol Energy Mat Sol C. 2012;101:51–6.CrossRefGoogle Scholar
  4. 4.
    Soares N, Costa JJ, Gaspar AR, Santos P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013;59:82–103.CrossRefGoogle Scholar
  5. 5.
    Shukla A, Buddhi D, Sawhney RL. Thermal cycling test of few selected inorganic and organic phase change materials. Renew Energy. 2008;33(12):2606–14.CrossRefGoogle Scholar
  6. 6.
    Zhang P, Song Y, Hu L, Lu HD, Wang J, Liu QQ. Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material. Thermochim Acta. 2009;487:74–9.CrossRefGoogle Scholar
  7. 7.
    Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37.CrossRefGoogle Scholar
  8. 8.
    Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy. 2013;112:1357–66.CrossRefGoogle Scholar
  9. 9.
    Aydın AA, Okutan H. High-chain fatty acid esters of myristyl alcohol with even carbon number: novel organic phase change materials for thermal energy storage –1. Sol Energy Mat Sol C. 2011;95(8):2752–62.CrossRefGoogle Scholar
  10. 10.
    Zhu JQ, Bai LG, Chen BH, Fei WY. Thermodynamical properties of phase change materials based on ionic liquids. Chem Eng J. 2009;147:58–62.CrossRefGoogle Scholar
  11. 11.
    Cabeza LF. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011;15(3):1675–95.CrossRefGoogle Scholar
  12. 12.
    Py X, Olivès R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Tran. 2001;44:2727–37.CrossRefGoogle Scholar
  13. 13.
    Wu SY, Wang H, Xiao S, Zhu DH. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J Therm Anal Calorim. 2012;110:1127–31.CrossRefGoogle Scholar
  14. 14.
    Ungar G, Zeng X-b. Learning polymer crystallization. Chem Rev. 2001;101(12):4157–88.CrossRefGoogle Scholar
  15. 15.
    Sullivan PK. Solid-phase behavior of several long-chain n-paraffins, esters, and a ketone. J Res NBS A Phys Ch. 1974;78A(2):129–41.CrossRefGoogle Scholar
  16. 16.
    Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev. 2007;11(6):1146–66.CrossRefGoogle Scholar
  17. 17.
    Fernandez AI, Sole A, Barreneche C, Martinez M, Martonell I, Miro L, Hadjeva M, Boudenne A, Bey Sana S, Magali F, Constantinescu M, Anghel EM, Malikova M, Krupa I, Penelosa C, Delgado M, Lazaro A, Paksoy HO, Yilmaz B, Bajare D, Sumiga B, Boh B, Haussmann T, Stefan S, Weber R, Fumarski P, Jarowski M, Cabeza LF. Characterization of PCM conventional and non-conventional technologies, Proceedings of the 2nd International Energy Storage Conference, Trinity College Dublin. 19–21 June 2013. pp. 85–91.Google Scholar
  18. 18.
    Giavarini C, Pochetti F. Characterization of petroleum products by DSC analysis. J Therm Analysis. 1973;5:83–94.CrossRefGoogle Scholar
  19. 19.
    Mehling H, Cabeza LF. Heat and cold storage with PCM. Heat and Mass Transfer. Berlin Heidelberg: Springer Verlag; 2008.Google Scholar
  20. 20.
    Popov R, Georgiev A, SCADA system for study of the installation with solar collectors, charging phase change materials and borehole storage, Proceedings of the 2th International Energy Storage Conference, Trinity College Dublin. 19–21 June 2013. pp. 206–212.Google Scholar
  21. 21.
    Georgiev A, Tabakova S, Popov R, Valkov I, Moev S, Barzilova S, Lishev S, Takev M, Vassilev A, Boichev A. Construction and modeling of heat energy storage with phase change materials. J Technic Univ Sofia, branch Plovdiv. 2011;16(2):45–51.Google Scholar
  22. 22.
    Constantinescu M, Dumitrache L, Constantinescu D, Anghel EM, Popa VT, Stoica A, Olteanu M. Latent heat nano composite building materials. Eur Polym J. 2010;6:2247–54.CrossRefGoogle Scholar
  23. 23.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stan. 1956;57:217–21.CrossRefGoogle Scholar
  24. 24.
    Wagner W, Kleinrahm R, Losch HW, Watson JTR. Hydrostatic Balance Densimeter with Magnetic Suspension. In: Goodwin A, Marsh KN, editors. Measurement of the “Measurement of the Thermodynamic Properties of Single Phases”, Elsevier, 2003. Amsterdam: Elsevier; 2003. p. 125–219.Google Scholar
  25. 25.
    Edwards HGM, Falk MJP. Fourier-transform Raman spectroscopic study of unsaturated and saturated waxes. Spectrochim Acta, Part A. 1997;53(14):2685–94.CrossRefGoogle Scholar
  26. 26.
    Zheng M, Du W. Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: a Raman spectroscopy study. Vib Spectrosc. 2006;40:219–24.CrossRefGoogle Scholar
  27. 27.
    Jehlicka J, Edwards HGM, Jorge Villar SE. Raman spectroscopy of natural accumulated paraffins from rocks: evenkite, ozokerite and hatchetine. Spectrochim Acta, Part A. 2007;68:1143–8.CrossRefGoogle Scholar
  28. 28.
    Boerio FJ, Koening JL. Raman scattering in crystalline polyethylene. J Chem Phys. 1970;52:3425–31.CrossRefGoogle Scholar
  29. 29.
    Dirand M, Bouroukba M, Chevallier V, Petitjean D, Behar E, Ruffier-Meray V. Normal alkanes, multialkane synthetic model mixtures, and real petroleum waxes: crystallographic structures, thermodynamic properties and crystallization. J Chem Eng Data. 2002;47:115–43.CrossRefGoogle Scholar
  30. 30.
    Abbate S, Wunder SL, Zerbi G. Conformational dependence of Fermi resonances in n-alkanes. Raman spectra of 1,1,1,4,4,4-hexadeuteriobutane. J Phys Chem. 1984;88(3):593–600.CrossRefGoogle Scholar
  31. 31.
    Hacura A, Kaczorowska B. Raman microscopic characterization of phase separation in binary n-alkane mixtures. J Mol Struct. 2005;744–747:581–4.CrossRefGoogle Scholar
  32. 32.
    Zuckerman JL, Pushaw RJ, Perry BT, Wyner DM. Fabric coating containing energy absorbing phase change material and method of manufacturing same. US Pat. 2003;6660667:B2.Google Scholar
  33. 33.
    Pavel PM, Constantinescu M, Anghel EM, Olteanu M. Solidification of a PEG 1500-epoxy nanocomposite around a horizontal pipe. App Energy. 2012;89:482–9.CrossRefGoogle Scholar
  34. 34.
    Hadjieva M, Kanev St, Argirov J. Thermophysical properties of some paraffins applicable to thermal energy storage. Sol Energy Mat Sol C. 1992;27(2):181–7.CrossRefGoogle Scholar
  35. 35.
    Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal data. Termochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  36. 36.
    Assis E, Ziskind G, Letan R. Numerical and experimental study of solidification in a spherical shell. J Heat Trans-T ASME. 2009;131:024502-1-5.CrossRefGoogle Scholar
  37. 37.
    Tyagi VV, Pandey AK, Kaushik C, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2012;107:1345–52.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • E. M. Anghel
    • 1
  • A. Georgiev
    • 2
  • S. Petrescu
    • 1
  • R. Popov
    • 3
  • M. Constantinescu
    • 1
  1. 1.Romanian Academy, Institute of Physical Chemistry ‘‘Ilie Murgulescu”BucharestRomania
  2. 2.Department of MechanicsTechnical University of Sofia, Branch PlovdivPlovdivBulgaria
  3. 3.Department of Optoelectronics and Laser EngineeringTechnical University of Sofia, Branch PlovdivPlovdivBulgaria

Personalised recommendations