Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 783–787 | Cite as

Applicability of Kissinger model in nonisothermal crystallization assessed using a computer simulation method

  • Zhiying Zhang
  • Jia Chen
  • Haijing Liu
  • Changfa Xiao


The Kissinger method is one of the most popular approaches for determining kinetic parameters from the nonisothermal processes. The applicability of the Kissinger model in describing the nonisothermal crystallization was verified using the data of the simulated experiments with the given crystallization mechanism. The results show that the data of the Monte Carlo experiments for nonisothermal crystallization can be used to evaluate the nonisothermal crystallization model. The Kissinger model can be used to estimate the parameter of the activation energy of the nonisothermal crystallization from the DSC curves with the different heating rates, but unsuitable to obtain the parameter from the DSC curves with the different cooling rates.


Kissinger model Nonisothermal crystallization Poly(ethylene terephthalate) Monte Carlo method 


  1. 1.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.CrossRefGoogle Scholar
  2. 2.
    Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19:1142–4.CrossRefGoogle Scholar
  3. 3.
    Harnisch K, Lanzenberger R. Determination of the avrami exponent by non-isothermal analyses. J Non-Cryst Solids. 1982;53:235–45.CrossRefGoogle Scholar
  4. 4.
    Harnisch K, Muschik H. Determination of the Avrami exponent of partially crystallized polymers by DSC-(DTA) analyses. Coll Polym Sci. 1983;261:908–13.CrossRefGoogle Scholar
  5. 5.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  6. 6.
    Svoboda R, Cicmanec P, Malek J. Kissinger equation versus glass transition phenomenology. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-012-2892-3.Google Scholar
  7. 7.
    Patel AT, Pratap A. Study of kinetics of glass transition of metallic glasses. J Therm Anal Calorim. 2012;110:567–71.CrossRefGoogle Scholar
  8. 8.
    Ariffin A, Ariff ZM, Jikan SS. Evaluation on nonisothermal crystallization kinetics of polypropylene/kaolin composites by employing Dobreva and Kissinger methods. J Therm Anal Calorim. 2011;103:171–7.CrossRefGoogle Scholar
  9. 9.
    Biswas K, Sontakke AD, Majumder M, Annapurna K. Nonisothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass. J Therm Anal Calorim. 2010;101:143–51.CrossRefGoogle Scholar
  10. 10.
    Svoboda R, Malek J. Crystallization kinetics of amorphous Se. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-012-2922-1.Google Scholar
  11. 11.
    Sirisinha K, Boonkongkaew M, Kositchaiyong S. The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test. 2010;29:958–65.CrossRefGoogle Scholar
  12. 12.
    Yan Q-L, Zeman S, Selesovsky J, Svoboda R, Elbeih A. Thermal behavior and decomposition kinetics of formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2013;111:1419–30.CrossRefGoogle Scholar
  13. 13.
    Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. J Therm Anal Calorim. 2012;108:1251–60.CrossRefGoogle Scholar
  14. 14.
    Liu XW, Feng YL, Li HR, zhang P, Wang P. Thermal decomposition kinetics of magnesite from thermogravimetric data. J Therm Anal Calorim. 2012;107:407–12.CrossRefGoogle Scholar
  15. 15.
    Hao W, Hu J, Chen L, Zhang J, Xing L, Yang W. Isoconversional analysis of non-isothermal curing process of epoxy resin/epoxide polyhedral oligomeric silsesquioxane composites. Polym Test. 2011;30:349–55.CrossRefGoogle Scholar
  16. 16.
    Supriya N, Catherine KB, Rajeev R. DSC-TG studies on kinetics of curing and thermal decomposition of epoxy: ether amine systems. J Therm Anal Calorim. 2012. doi: 10.1007/s10973-012-2805-5.Google Scholar
  17. 17.
    Schaaf E, Zimmermann H. Non-isothermal crystallisation kinetics of nucleated poly(ethylene terephthalate). J Therm Anal Calorim. 1988;33:1053–8.CrossRefGoogle Scholar
  18. 18.
    Hu X, Lesser AJ. Non-isothermal crystallization of poly(trimethylene terephthalate)/clay nanocomposites. Macromol Chem Phys. 2004;205:574–80.CrossRefGoogle Scholar
  19. 19.
    Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625–34.CrossRefGoogle Scholar
  20. 20.
    Krishnan PSG, He C. Synthesis, characterization, and polymerization kinetics of novel ladder-like polysilsesquioxanes containing side-chain propyl methacrylate groups. Macromol Chem Phys. 2003;204:531–9.CrossRefGoogle Scholar
  21. 21.
    Xu W, Liang G, Wang W, Tang S, He P, Pan W-P. Poly(propylene)-poly(propylene)-grafted maleic anhydride-organic montmorillonite (PP–PP-g-MAH-Org-MMT) nanocomposites. II. Nonisothermal crystallization kinetics. J Appl Polym Sci. 2003;88:3093–9.CrossRefGoogle Scholar
  22. 22.
    Chiu FC, Fu Q, Peng Y, Shih HH. Crystallization kinetics and melting behavior of metallocene short-chain branched polyethylene fractions. J Polym Sci Part B. 2002;40:325–37.CrossRefGoogle Scholar
  23. 23.
    Chiu FC, Peng CG, Fu Q. Non-isothermal crystallization and multiple melting behavior of syndiotactic polystyrene: pre-melting temperature effects. Polym Eng Sci. 2000;40:2397–406.CrossRefGoogle Scholar
  24. 24.
    El-Shahawy MA. Phase transformations of some poly(vinyl alcohol)-NiCl2 composites. Polym Int. 2003;52:1919–24.CrossRefGoogle Scholar
  25. 25.
    Zhang ZY, Xiao CF, Dong ZZ. Comparison of the Ozawa and modified Avrami models of polymer crystallization under nonisothermal conditions using a computer simulation method. Thermochim Acta. 2007;466:22–8.CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Comm. 2002;23:771–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Zhiying Zhang
    • 1
  • Jia Chen
    • 1
  • Haijing Liu
    • 1
  • Changfa Xiao
    • 1
  1. 1.School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations