Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 1, pp 307–318 | Cite as

Growth, structural, crystallisation, thermal decomposition and dielectric behaviour of melaminium bis(hydrogen oxalate) single crystal

  • V. Sangeetha
  • K. Gayathri
  • P. Krishnan
  • N. Sivakumar
  • N. Kanagathara
  • G. Anbalagan
Article

Abstract

Single crystals of melaminium bis (hydrogen oxalate) (MOX) single crystals have been grown from aqueous solution by slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MOX crystallises in monoclinic system with space group C2/c. The calculated lattice parameters are a = 20.075 ± 0.123 Å b = 8.477 ± 0.045 Å, c = 6.983 ± 0.015 Å, α = 90°, β = 102.6 ± 0.33°, γ = 90° and V = 1,159.73 (Å)3. Thermogravimetric analysis at three different heating rates 10, 15 and 20 °C min−1 has been done to study the thermal decomposition behaviour of the crystal. Non-isothermal studies on MOX reveal that the decomposition occurs in two stages. Kinetic parameters [effective activation energy (E a), pre-exponential factor (ln A)] of each stage were calculated by model-free method: Kissinger, Kim–Park and Flynn–Wall method and the results are discussed. A significant variation in effective activation energy (E a) with conversion progress (α) indicates that the process is kinetically complex. The linear relationship between the ln A and E a was established (compensation effect). DTA analyses were conducted at different heating rates and the activation energy was determined graphically from Kissinger and Ozawa equation. The average effective activation energy is calculated as 276 kJ mol−1 for the crystallization peak. The Avrami exponent for the crystallization peak temperature determined by Augis and Bennett method is found to be 1.95. This result indicates that the surface crystallization dominates overall crystallization. Dielectric study has also been done, and it is found that both dielectric constant and dielectric loss decreases with increase in frequency and is almost a constant at high frequency region.

Keywords

X-ray powder diffraction Thermogravimetric analysis Dielectric properties 

References

  1. 1.
    Russell KC, Lehn JM, Kyrit Sakes N, Decian A, Fisher J. Self-assembly of hydrogen-bonded supramolecular strands from complementary melamine and barbiturate components with chiral selection. New J Chem. 1998;22:123–8.CrossRefGoogle Scholar
  2. 2.
    Lange RFM, Meijer EW. Supramolecular polymer interactions using melamine. Macromol Symp. 1996;102:301–8.CrossRefGoogle Scholar
  3. 3.
    Bann B, Miller SA. Melamine and derivatives of melamine. Chem Rev. 1958;58:131–72.CrossRefGoogle Scholar
  4. 4.
    Frazier AW, Gautney J, Cabier JL. Preparation and characterization of melamine sulphurous and sulphuric acid adducts. Ind Eng Chem Prod Res Dev. 1982;21:470–3.CrossRefGoogle Scholar
  5. 5.
    May H. Pyrolysis of melamine. J Appl Chem. 1959;9:340–4.CrossRefGoogle Scholar
  6. 6.
    Costa L, Camino G. Thermal behaviour of melamine. J Therm Anal. 1988;4:423–9.CrossRefGoogle Scholar
  7. 7.
    Kanagathara N, Marchewka MK, Sivakumar N, Gayathri K, Renganathan NG, Gunasekaran S, Anbalagan G. A study of thermal and dielectric behavior melaminium perchlorate monohydrate single crystals. J Therm Anal Calorim. 2013;112:1317–23.CrossRefGoogle Scholar
  8. 8.
    Yu DL, He JL, Liu ZY, Xu B, Li DC, Tioan MJ. Phase transformation of melamine at high pressure and temperature. J Mater Sci. 2008;43:689–95.CrossRefGoogle Scholar
  9. 9.
    Chen W-Y, Wang Y-Z, Chang F-E. Thermal and flame retardation properties of melamine phosphate-modified epoxy resins. J Polym Res. 2004;11:109–17.CrossRefGoogle Scholar
  10. 10.
    Siimer K, Cristjanson P, Kaljuvee T, Pekh T, Lasn I, Saks I. TG–DTA study of melamine–urea–formaldehyde resins. J Therm Anal Calorim. 2008;92:19–27.CrossRefGoogle Scholar
  11. 11.
    Friedman HL. Kinetics of thermal degradation of charforming plastics of thermogravimetry: application to phenolic plastic. J Poly Sci Part C. 1965;6:183–95.CrossRefGoogle Scholar
  12. 12.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  13. 13.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;27:1702–6.CrossRefGoogle Scholar
  14. 14.
    Kim SD, Park JK. Characterization of thermal reaction by peak temperature and height of DTG curves. Thermochim Acta. 1995;64:137–56.CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S, Burnham AK, Craida JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  16. 16.
    Zhang X-L, Chen X-M, Ng SW. Acta Crystallogr E. 2005;61:o156–o157.Google Scholar
  17. 17.
    Drozd M, Marchewka MK. The structure, vibrational spectra and nonlinear optical properties of neutral melamine and singly, doubly and triply protonated melaminium cations—theoretical studies. J Mol Struct: THEOCHEM. 2005;716:175–92.CrossRefGoogle Scholar
  18. 18.
    Philip D, Aruldhas G. Infrared, polarized Raman, and SERS spectra of betaine hydrogen oxalate monohydrate. J Solid state Chem. 1995;114:129–37.CrossRefGoogle Scholar
  19. 19.
    Lautié A, Belabbes Y. Vibrational spectra and structure of some oxalix acid/substituted pyridine (methyl-, amino-, and dihalogeno-) complexes: hydrogen bond features. Spectrochim Acta A. 1996;52:1903–14.CrossRefGoogle Scholar
  20. 20.
    Marchewka MK. Infrared and Raman spectra of melaminium chloride hemihydrates. Mater Sci Eng. 2002;B95:214–21.CrossRefGoogle Scholar
  21. 21.
    Marchewka MK, Pietraszko A. Structure and spectra of melaminium citrate. J Phys Chem Solids. 2003;64:2169–81.CrossRefGoogle Scholar
  22. 22.
    Jones WJ, Orville-Thomas WJ. The infrared spectrum and structure of melamine. Trans Faraday Soc. 1959;55:203–10.CrossRefGoogle Scholar
  23. 23.
    Edwards HGM, Farwell DW, Rose SJ, Smith DN. Vibrational spectra of copper (II) oxalate dehydrate, CuC2O4·2H2O, and dipotassium bis-oxalato copper (II) tetrahydrate, K2Cu (C2O4)2·H2O. J Mol Struct. 1991;249:233–43.CrossRefGoogle Scholar
  24. 24.
    Bickeley RI, Edwards HGM, Rose SJ. A Raman spectroscopic study of nickel (II) oxalate dihydrate, NiC2O4·2H2O, and dipotassium bisoxalatonickel (II) hexahydrate, K2Ni(C2O4)2·6H2O. J Mol Struct. 1991;243:341–50.CrossRefGoogle Scholar
  25. 25.
    Kanagathara N, Marchewka MK, Pawlus K, Gunasekaran S, Anbalagan G. Thermal decomposition behaviour of melaminium benzoate dehydrate. J Appl Chem. 2013;194576:1–6.CrossRefGoogle Scholar
  26. 26.
    Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry, vol. 1. Amsterdam: Elsevier; 1998.Google Scholar
  27. 27.
    Galwey AK, Brown ME. Application of the Arrhenius equation to solid-state kinetics: can this be justified? Thermochim Acta. 2002;386:91–8.CrossRefGoogle Scholar
  28. 28.
    Andjelković K, Šumar M, Burmazovic I. Thermal analysis in structural characterization of hydrazone ligands and their complexes. J Therm Anal Calorim. 2001;66:759–78.CrossRefGoogle Scholar
  29. 29.
    Balboul BAA, El-Roudi AM, Samir E, Othman AG. Non-isothermal studies of the decomposition course of lanthanum oxalate decahydrate. Thermochim Acta. 2002;387:109–14.CrossRefGoogle Scholar
  30. 30.
    Brown ME, Dollimore D, Galwey AK. In: Banford CH, Tipper CFH, editors. Reactions in solid state. Amsterdam: Elsevier; 1980.Google Scholar
  31. 31.
    Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Chao-Rui L, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.CrossRefGoogle Scholar
  32. 32.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.CrossRefGoogle Scholar
  33. 33.
    Rajendran J, Lingam LT, Jose M, Jerome Das S. Kinetics and dissociation mechanism of heptaaqua-p-nitrophenolato strontium (II) nitrophenol. J Therm Anal Calorim. 2011;103:845–51.CrossRefGoogle Scholar
  34. 34.
    Budrugeac P, Segal E. On the apparent compensation effect found for two consecutive reactions. J. Therm. Anal. Calorim. 2000;62:227–35.CrossRefGoogle Scholar
  35. 35.
    Jing H, Hong S, Zhang L, Gan F, Ho Y-S. Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environ Bull. 2011;19:2651–6.Google Scholar
  36. 36.
    Ren Y, Dan L, Jianhua Y, Zhao F, Haixia Ma, Kangzhen X, Song J. Non isothermal decomposition reaction kinetics, specific heat capacity thermodynamic properties and adiabatic time-to-explosion of 4-amino-1,2,4-triazole copper complex. Bull Korean Chem Soc. 2010;31:1988–92.CrossRefGoogle Scholar
  37. 37.
    Dalal PV, Saraf KB, Shimpi NG, Shah NR. Pyro and kinetic studies of barium oxalate crystals grown in agar gel. J Cryst Process Technol. 2021;2:156–60.Google Scholar
  38. 38.
    Mallakpour S, Dinari M. Eco-friendly fast synthesis and thermal degradation of optically active polyamides under microwave accelerating conditions. Chin J Polym Sci. 2010;28:685–94.CrossRefGoogle Scholar
  39. 39.
    Mallikarjun KG. Thermal decomposition kinetics of Ni(II) chelates of substituted chalcones. E-J Chem. 2004;1:105–9.CrossRefGoogle Scholar
  40. 40.
    Alton J, Plaisted TJ. Kinetics of growth of spinel crystals in a borosilicate glass. Chem Eng Sci. 2002;57:2503–9.CrossRefGoogle Scholar
  41. 41.
    Grong O, Myhr OR. Additivity and isokinetic behaviour in relation to diffusion controlled growth. Acta Mater. 2000;48:445–52.CrossRefGoogle Scholar
  42. 42.
    Ozawa T. Temperature control modes in thermal analysis. Pure Appl Chem. 2000;72:2083–99.CrossRefGoogle Scholar
  43. 43.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions suing a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.CrossRefGoogle Scholar
  44. 44.
    Cheng K. Evaluation of crystallization kinetics of glasses by non-isothermal analysis. J Mater Sci. 2001;36:1043–8.CrossRefGoogle Scholar
  45. 45.
    Pérez-Maqueda LA, Criado JM, Málek J. Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Solids. 2003;320:84–91.CrossRefGoogle Scholar
  46. 46.
    Lin HM, Chen YF, Shen JL, Chou WC. Dielectric studies of Cd1−x−yZnxMnyTe crystals. J Appl Phys. 2001;89:4476–9.CrossRefGoogle Scholar
  47. 47.
    Gupta V, Bamzai KK, Kotru PN, Wanklyn BM. Dielectric properties, ac conductivity and thermal behaviour of flux grown cadmium titanate crystals. Mater Sci Eng B. 2006;130:163–72.CrossRefGoogle Scholar
  48. 48.
    Goel N, Sinha N, Kumar B. Growth and properties of sodium tetraborate decahydrate single crystals. Mater Res Bull. 2013;48:1632–6.CrossRefGoogle Scholar
  49. 49.
    Mariappan CR, Govindaraj G, Ramya L, Hariharan S. Synthesis, characterization and electrical conductivity studies on A3Bi3P3O12 (A = Na, K) materials. Mater Res Bull. 2005;40:610–8.CrossRefGoogle Scholar
  50. 50.
    Austin IG, Mott NF. Polarons in crystalline and non-crystalline materials. Adv Phys. 1969;18:41–102.CrossRefGoogle Scholar
  51. 51.
    Sayer M, Mansingh M. Transport properties of semiconducting phosphate glasses. Phys Rev. 1972;B6:4629–43.CrossRefGoogle Scholar
  52. 52.
    Verwey EJW, Heilman EL. Physical properties and cation arrangement of oxides with spinel structures II. Electronic conductivity. J Chem Phys. 1947;15:174–80.CrossRefGoogle Scholar
  53. 53.
    Nefzi H, Sediri F, Hamzaoui H, Gharbi N. Electric conductivity analysis and dielectric relaxation behavior of the hybrid polyvanadate (H3N(CH2)3NH3)[V4O10]. Mater Res Bull. 2013;48:1978–83.CrossRefGoogle Scholar
  54. 54.
    Krishnan P, Gayathri K, Jayasakthi M, Gunasekaran S, Anbalagan G. Growth, structural, thermal, dielectric, mechanical and optical characterization of 2,3-dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate single crystal. J Cryst Growth. 2013;383:43–50.CrossRefGoogle Scholar
  55. 55.
    Vasudevan P, Sankar S, Jayaraman D. Synthesis, optical and electrical studies of nonlinear optical crystal: l-arginine semi-oxalate. Bull Korean Chem Soc. 2013;34:128–32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • V. Sangeetha
    • 1
  • K. Gayathri
    • 2
  • P. Krishnan
    • 2
  • N. Sivakumar
    • 2
  • N. Kanagathara
    • 3
  • G. Anbalagan
    • 2
  1. 1.Department of PhysicsD.G.Vaishnav CollegeChennaiIndia
  2. 2.Department of PhysicsPresidency CollegeChennaiIndia
  3. 3.Department of PhysicsVel Tech Dr. RR Dr. SR Technical UniversityChennaiIndia

Personalised recommendations