Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 985–992 | Cite as

The influences of combinative effect of temperature and humidity on the thermal stability of pyrotechnic mixtures containing strontium nitrate as oxidizer

  • Liqiong Wang
  • Xuejiao Shi
  • Wenjuan Wang
Article

Abstract

The influences of combinative effect of temperature and humidity on the thermal stabilities of three pyrotechnic compositions are investigated in the study. The thermal behavior for each pyrotechnic is analyzed by SETARAM thermal analyzer. Activation energy is determined by Kissinger method and critical temperature of thermal explosion (T b) of pyrotechnic compositions is also calculated. The results of thermal analysis revealed that relative humidity could decrease the thermal stability of pyrotechnic mixtures. The critical temperature of thermal explosion (T b) of each pyrotechnics decreased as the relative humidity increasing. Based on the value of T b, the thermal stabilities of the pyrotechnic mixtures are in the order of Sr(NO3)2/Mg4Al3/PVC/PF > Sr(NO3)2/SrCO3/KClO4/Mg4Al3/PVC/PF > Sr(NO3)2/KClO4/Mg4Al3/PVC/PF. The thermal stability of Sr(NO3)2/Mg4Al3/PVC/PF show the best thermal stability than other two mixtures whether it is in the condition of humidity or not.

Keywords

DSC Pyrotechnic compositions Thermal stability Humidity 

List of symbols

dα/dT

Reaction rate

A

Pre-exponential factor (s−1)

E

Activation energy (kJ mol−1)

R

Gas constant (J mol−1 K−1)

T

Temperature of the sample (°C)

Tp

Temperature at which maximum conversion rate occurs on DTG curve (°C)

Tpi

Extrapolated peak onset temperature (°C)

Tp0

Peak onset temperature at the heating rate of zero (°C)

f(α)

Reaction mechanism function

g(α)

Integral form of the reaction mechanism function

α

Degree of conversion (g)

β

Heating rate (°C min−1)

b

Coefficient

c

Coefficient

n

Reaction order

References

  1. 1.
    Zeshan Wang. Energetic materials introduction. Harbin: Harbin Institute of Technology press; 2006.Google Scholar
  2. 2.
    Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2010;101:1111–9.CrossRefGoogle Scholar
  3. 3.
    de Klerk WPC, Colpa W, van Ekeren PJ. Ageing studies of magnesium-sodium nitrate pyrotechnic compositions. J Therm Anal Calorim. 2006;85:203–7.CrossRefGoogle Scholar
  4. 4.
    Sivapirakasam SP, Surianarayanan M, Venkatratnam GS, Nagaraj P. In hazard evaluation technique for firework compositions. Indian Chemical Engineering Congress; 2003.Google Scholar
  5. 5.
    Nie JH. Study on safety production core issue of fireworks and firecrackers. J Saf Sci Technol. 2010;6:66–7.Google Scholar
  6. 6.
    Zhou GW. Thermal safety study of fireworks and crackers, Ms.d. thesis. Beijing Institute of Technology, Beijing, 2010.Google Scholar
  7. 7.
    Guo S, Wang Q, Sun J, Liao X, Wang Z. Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater. 2009;168:536–41.CrossRefGoogle Scholar
  8. 8.
    Li X-R, Koseki H, Iwata Y. Thermal characteristics of lysine tri-isocyanate and its mixture with water. J Hazard Mater. 2007;142:647–52.CrossRefGoogle Scholar
  9. 9.
    de Klerk WPC, Krabbendam-LaHaye ELM, Berger B, Brechbuhl H, Popescu C. Thermal studies to determine the accelerated ageing of flares. J Therm Anal Calorim. 2005;80:529–36.CrossRefGoogle Scholar
  10. 10.
    de la Fuente JL. An analysis of the thermal aging behavior in high-performance energetic composites through the glass transition temperature. Polym Degrad Stab. 2009;94:664–9.CrossRefGoogle Scholar
  11. 11.
    Brian A, McDonald. Study of the effects of aging under humidity control on the thermal decomposition of NC/NG/BTTN/RDX propellants. Propellant Explos Pyrotech. 2011;36:576–83.CrossRefGoogle Scholar
  12. 12.
    Brown SD, Charsley EL, Goodall SJ, Laye PG, Rooney JJ, Griffiths TT. Studies on the ageing of a magnesium–potassium nitrate pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques. Thermochim Acta. 2003;401:53–61.CrossRefGoogle Scholar
  13. 13.
    Tuukkanen IM, Brown SD, Charsley EL, Goodall SJ, Laye PG, Rooney JJ, Griffiths TT, Lemmetyinen H. A study of the influence of the fuel to oxidant ratio on the ageing of magnesium–strontium nitrate pyrotechnic compositions using isothermal microcalorimetry and thermal analysis techniques. Thermochim Acta. 2005;426:115–21.CrossRefGoogle Scholar
  14. 14.
    Tuukkanen IM, Brown SD, Charsley EL, Goodall SJ, Rooney JJ, Lemmetyinen H. Studies on the ageing of magnesium–strontium nitrate pyrotechnic compositions using isothermal microcalorimetry and thermal analysis techniques. Thermochim Acta. 2004;417:223–9.CrossRefGoogle Scholar
  15. 15.
    Sajadi SAA, Khaleghian M. Study of thermal behaviour of CrO3 using TG and DSC. J Therm Anal Calorim. 2014. doi: 10.1007/s10973-013-3597-y.
  16. 16.
    Biedunkiewicz A, Krawczyk M, Gabriel-Polrolniczak U, Figiel P. Analysis of (NH4)6Mo7O24·4H2O thermal decomposition in argon. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-013-3582-5.Google Scholar
  17. 17.
    Yan QL, Zeman S, Selesovsky J, Svoboda R, Elbeih A. Thermal behavior and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2013;111:1419–30.CrossRefGoogle Scholar
  18. 18.
    Drebushchak VA, Mikhailenko MA, Shakhtshneider TP, Drebushchak TN, Kuznetsova SA, Malyar JN. Thermal properties of betulin dipropionate and its mixtures with polymers. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-013-3578-1.
  19. 19.
    Liu LL, He GQ, Wang YH. Thermal reaction characteristics of the boron used in the fuel-rich propellant. J Therm Anal Calorim. 2013;114:1057–68.CrossRefGoogle Scholar
  20. 20.
    Grigorova E, Spassova M, Khristov M, Tsyntsarski B, Spassov T. High-pressure DSC study on the hydriding and dehydriding of Mg/C nanocomposites. J Therm Anal Calorim. 2014. doi: 10.1007/s10973-013-3574-5.Google Scholar
  21. 21.
    Alshehri SM, Ahamad T. Thermal degradation and evolved gas analysis of N,N′-bis(2 hydroxyethyl) linseed amide (BHLA) during pyrolysis and combustion. J Therm Anal Calorim. 2013;114:1029–37.CrossRefGoogle Scholar
  22. 22.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;1702–6.Google Scholar
  23. 23.
    Ouyang D, Pan G, Guan H, Zhu C, Chen X. Effect of different additives on the thermal properties and combustion characteristics of pyrotechnic mixtures containing the KClO4/Mg–Al alloy. Thermochim Acta. 2011;513:119–23.CrossRefGoogle Scholar
  24. 24.
    Tuukkanen IM, Charsley EL, Laye PG, Rooney JJ, Griffiths TT, Lemmetyinen Helge. Pyrotechnic and thermal studies on the magnesium-strontium nitrate pyrotechnic system. Propellants Explos Pyrotech. 2006;31:110–5.CrossRefGoogle Scholar
  25. 25.
    Nacu S. Experimental study on the pyrotechnic composition signalling red and green using DTA. Rev Chim (Bucharest). 2011;62:240–4.Google Scholar
  26. 26.
    Kang X, Zhang J, Zhang Q, Kai D, Tang Y. Studies in ignition and afterburning processes of KClO4/Mg pyrotechnics heated in air. Them Anal Calorim. 2012;109:1333–40.CrossRefGoogle Scholar
  27. 27.
    Tuukkanen IM, Charsley EL, Goodall SJ, Laye PG, Rooney JJ, Griffiths TT, Lemmetyinen H. An investigation of strontium nitrite and its role in the ageing of the magnesium–strontium nitrate pyrotechnic system using isothermal microcalorimetry and thermal analysis techniques. Thermochim Acta. 2006;443:116–21.CrossRefGoogle Scholar
  28. 28.
    Jun Wan. Hygroscopicity of fireworks. Technol Mark Firew. 2003;35:35–6.Google Scholar
  29. 29.
    Xing X, Zhao F, Ma S, Xu K, Xiao L, Gao H, An T, Hu R. Specific heat capacity, thermal behavior, and thermal hazard of 2,4-dinitroanisole. Propellants Explos Pyrotech. 2012;37:179–82.CrossRefGoogle Scholar
  30. 30.
    Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS. An investigation on decomposition kinetics and thermal properties of copper-fueled pyrotechnic compositions. Combust Sci Technol. 2011;183:575–87.CrossRefGoogle Scholar
  31. 31.
    Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperature of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations