Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 1, pp 447–461 | Cite as

Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries

  • Jianbo Zhang
  • Jun Huang
  • Zhe Li
  • Bin Wu
  • Zhihua Nie
  • Ying Sun
  • Fuqiang An
  • Ningning Wu


The heat generation rate of a large-format 25 Ah lithium-ion battery is studied through estimating each term of the Bernardi model. The term for the reversible heat is estimated from the entropy coefficient and compared with the result from the calorimetric method. The term for the irreversible heat is estimated from the intermittent current method, the V–I characteristics method and a newly developed energy method. Using the obtained heat generation rates, the average cell temperature rise under 1C charge/discharge is calculated and validated against the results measured in an accelerating rate calorimeter (ARC). It is found that the intermittent current method with an appropriate interval and the V–I characteristics method using a pouch cell yield close agreement, while the energy method is less accurate. A number of techniques are found to be effective in circumventing the difficulties encountered in estimating the heat generation rate for large-format lithium-ion batteries. A pouch cell, using the same electrode as the 25 Ah cell but with much reduced capacity (288 mAh), is employed to avoid the significant temperature rise in the V–I characteristics method. The first-order inertial system is utilized to correct the delay in the surface temperature rise relative to the internal heat generation. Twelve thermocouples are used to account for the temperature distribution.


Lithium-ion battery Heat generation rate Energy method V–I characteristics method Intermittent current method 



This study was supported by the National Natural Science Foundation of China under the grant number of 51207080, the Independent Research Programs of Tsinghua University under the subject number of 2011Z01004, and the China Postdoctoral Science Foundation under the Grant number of 2012M510436.


  1. 1.
    Yang K, An JJ, Chen S. Temperature characterization analysis of LiFePO4/C power battery during charging and discharging. J Therm Anal Calorim. 2010;99:515–21.CrossRefGoogle Scholar
  2. 2.
    Jhu CY, Wang YW, Wen CY, Chiang CC, Shu CM. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries. J Therm Anal Calorim. 2011;106:159–63.CrossRefGoogle Scholar
  3. 3.
    Jhu CY, Wang YW, Wen CY, Chiang CC, Shu CM. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J Therm Anal Calorim. 2011;106:159–63.CrossRefGoogle Scholar
  4. 4.
    Lu TY, Chiang CC, Wu SH, Chen KC, Lin SJ, Wen CY, Shu CM. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-013-3137-9.Google Scholar
  5. 5.
    Yang K, Li DH, Chen S, Wu F. Thermal behavior of nickel/metal hydride battery during charging and discharging. J Therm Anal Calorim. 2009;95:455–9.CrossRefGoogle Scholar
  6. 6.
    Li Z, Zhang J, Wu B, Huang J, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples. J Power Sources. 2013;241:536–53.CrossRefGoogle Scholar
  7. 7.
    Yang K, An JJ, Chen S. Influence of additives on the thermal behavior of nickel/metal hydride battery. J Therm Anal Calorim. 2010;102:953–9.CrossRefGoogle Scholar
  8. 8.
    Hallaj SA, Maleki H, Hong JS, Selman JR. Thermal modeling and design considerations of lithium-ion batteries. J Power Sources. 1999;83:1–8.CrossRefGoogle Scholar
  9. 9.
    Billy W, Vladimir Y, Monica M, Gregory JO, Ricardo FM, Nigel PB. Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs. J Power Sources. 2013;243:544–54.CrossRefGoogle Scholar
  10. 10.
    Gu WB, Wang CY. Thermal-electrochemical modeling of battery systems. J Electrochem Soc. 2000;147:2910–22.CrossRefGoogle Scholar
  11. 11.
    Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc. 1985;132(1):5–12.CrossRefGoogle Scholar
  12. 12.
    Onda K, Kameyama H, Hanamoto T, Ito K. Experimental study on heat generation behavior of small lithium-ion secondary batteries. J Electrochem Soc. 2003;150:A285–91.CrossRefGoogle Scholar
  13. 13.
    Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. Thermal behavior of small lithium-ion secondary battery during rapid charge and discharge cycles. J Power Sources. 2006;158:535–42.CrossRefGoogle Scholar
  14. 14.
    Ohshima T, Nakayama M, Fukuda K, Araki T, Onda K. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. Electr Eng Jpn. 2006;157:1521–8.CrossRefGoogle Scholar
  15. 15.
    Hallaj SA, Venkatachalapathy R, Prakash J, Selman JR. Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode. J Electrochem Soc. 2000;147:2432–6.CrossRefGoogle Scholar
  16. 16.
    Hallaj SA, Prakash J, Selman JR. Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements. J Power Sources. 2000;87:186–94.CrossRefGoogle Scholar
  17. 17.
    Lu W, Prakash J. In situ measurements of heat generation in a Li/mesocarbon microbead half-cell. J Electrochem Soc. 2003;150:A262–6.CrossRefGoogle Scholar
  18. 18.
    Yang H, Prakash J. Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique. J Electrochem Soc. 2004;151:A1222–9.CrossRefGoogle Scholar
  19. 19.
    Bang H, Yang H, Sun YK, Parakash J. In situ studies of LixMn2O4 and LixAl0.17Mn1.83O3.97S0.03 cathode by IMC. J Electrochem Soc. 2005;151:A421–8.CrossRefGoogle Scholar
  20. 20.
    Thomas KE, Bogatu C, Newman J. Measurements of the entropy of the reaction as a function of sate of charge in doped and undoped lithium manganese oxide. J Electrochem Soc. 2001;148:A570–5.CrossRefGoogle Scholar
  21. 21.
    FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles, DOE/ID-11069, Idaho National Engineering and Environmental Laboratory, Draft, April 2003Google Scholar
  22. 22.
    Lv Z, Guo X, Qiu X. New Li-ion battery evaluation research based on thermal property and heat generation behavior of battery. Chin J Chem Phys. 2012;25:725–32.CrossRefGoogle Scholar
  23. 23.
    Ishikawa H, Mendoza O, Sone Y, Umeda M. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method. J Power Sources. 2012;198:236–42.CrossRefGoogle Scholar
  24. 24.
    Williford RE, Viswanathan VV, Zhang J. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium-ion batteries. J Power Sources. 2009;189:101–7.CrossRefGoogle Scholar
  25. 25.
    Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang J, Liu J, Yang Z. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources. 2010;195:3720–9.CrossRefGoogle Scholar
  26. 26.
    Moss PL, Au G, Plichta EJ, Zheng JP. An electrical circuit for modeling the dynamic response of Li-ion polymer batteries. J Electrochem Soc. 2008;155:A986–94.CrossRefGoogle Scholar
  27. 27.
    Zhang J, Huang J, Li Z, Song S, Song W, Wu N. The study of resistance variation between charging and discharging process by current-interrupt technique and dynamic electrochemical impedance spectroscopy (DEIS). 2013 IEEE vehicle power and propulsion conference (VPPC), Beijing, China, 15–18 Oct 2013.Google Scholar
  28. 28.
    Huang J, Li Z, Zhang J, Song S, Wu N. Exploring differences between charging and discharging of LixMn2O4/Li half-cell with dynamic electrochemical impedance spectroscopy (DEIS). The 9th international symposium on electrochemical impedance spectroscopy, Okinawa, Japan, 17–21 June 2013.Google Scholar
  29. 29.
    Zhang J, Wu B, Zhe L, Huang J. Simultaneous estimation of multiple thermal parameters of large-format laminated lithium-ion batteries. 2013 IEEE vehicle power and propulsion conference (VPPC), Beijing, China, 15–18 Oct 2013.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Jianbo Zhang
    • 1
  • Jun Huang
    • 1
  • Zhe Li
    • 1
  • Bin Wu
    • 1
  • Zhihua Nie
    • 2
  • Ying Sun
    • 2
  • Fuqiang An
    • 2
  • Ningning Wu
    • 2
  1. 1.Department of Automotive EngineeringState Key Laboratory of Automotive Safety and Energy, Tsinghua UniversityBeijingChina
  2. 2.CITIC Guo’an MGL Power Technology Co., LtdBeijingChina

Personalised recommendations