Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 3, pp 1315–1324 | Cite as

Natural iron ore as an oxygen carrier for biomass chemical looping gasification in a fluidized bed reactor

  • Zhen Huang
  • Fang He
  • Kun Zhao
  • Yipeng Feng
  • Anqing Zheng
  • Sheng Chang
  • Zengli Zhao
  • Haibin Li


Chemical looping gasification (CLG) of biomass was performed in a thermogravimetric analyzer (TG) reactor together with a fluidized reactor with natural iron ore oxygen carrier under inert atmosphere. TG experiments indicated that iron ore can provide oxygen source for biomass conversion in the form of lattice oxygen. In the fluidized bed experiments, the influences of reduction temperature on CLG of biomass were emphatically investigated in terms of gas distribution and solid characters. The gas yield and carbon conversion increased, but the tar content decreased in the temperature range of 1,013–1,213 K. In this temperature range, the conversion of oxygen carrier increased from 24.11 to 53.59 %. X-ray diffraction analysis shows that more FeO was generated with temperature increasing. Scanning electron microscope analysis indicates that sintering was observed at elevated temperature. An optimum mass ratio of biomass/oxygen carrier (B/O) of 0.67 was obtained with aim of achieving maximum gasification efficiency of 76.93 %.


Biomass Chemical looping gasification (CLG) Natural iron ore Oxygen carrier 



The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (51076154). This work was also supported by Science and Technology Project of Guangdong (2010B010900047), “12th Five Years” National Science and Technology Support Program (2011BAD15B05).


  1. 1.
    Barman NS, Ghosh S, De S. Gasification of biomass in a fixed bed downdraft gasifier-A realistic model including tar. Bioresour Technol. 2012;107:505–11.CrossRefGoogle Scholar
  2. 2.
    Baratieri M, Baggio P, Fiori L, Grigiante A. Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresour Technol. 2008;99:7063–73.CrossRefGoogle Scholar
  3. 3.
    Poskrobko S, KrÓl D, Biofuels Part II. Thermogravimetric research of dry decomposition. J Therm Anal Calorim. 2012;109:629–38.CrossRefGoogle Scholar
  4. 4.
    Nakanishi M, Ogi T, Fukuda Y. Thermogravimetric analysis in steam and oxygen with gas chromatograph mass spectrometry for basic study of biomass gasification. J Therm Anal Calorim. 2010;101:391–6.CrossRefGoogle Scholar
  5. 5.
    Kumar A, Eskridge K, Jones DD, Hanna MA. Steam-air fluidized bed gasification of distillers grains: effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresour Technol. 2009;100:2062–8.CrossRefGoogle Scholar
  6. 6.
    Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chem Eng Sci. 2008;63:4433–51.CrossRefGoogle Scholar
  7. 7.
    Zhao HY, Cao Y, Orndorff W, Pan WP. Study on modification of Cu-based oxygen carrier for chemical looping combustion. J Therm Anal Calorim. 2013;113:1123–8.CrossRefGoogle Scholar
  8. 8.
    Sonoyama N, Nobuta K, Kimura T, Hosokai S, Hayashi J, Tago T, et al. Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere. Fuel Process Technol. 2011;92:771–5.CrossRefGoogle Scholar
  9. 9.
    Huang Z, He F, Zheng A, Zhao K, Chang S, Zhao Z, et al. Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier. Energy. 2013;53:244–51.CrossRefGoogle Scholar
  10. 10.
    Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci. 2012;38:215–82.CrossRefGoogle Scholar
  11. 11.
    Cho P, Mattisson T, Lyngfelt A. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83:1215–25.CrossRefGoogle Scholar
  12. 12.
    Xiao R, Song QL, Song M, Lu ZJ, Zhang SA, Shen LH. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier. Combust Flame. 2010;157:1140–53.CrossRefGoogle Scholar
  13. 13.
    Leion H, Mattisson T, Lyngfelt A. Solid fuels in chemical-looping combustion. Int J Greenh Gas Control. 2008;2:180–93.CrossRefGoogle Scholar
  14. 14.
    Leion H, Jerndal E, Steenari BM, Hermansson S, Israelsson M, Jansson E, et al. Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers. Fuel. 2009;88:1945–54.CrossRefGoogle Scholar
  15. 15.
    Keller M, Leion H, Mattisson T, Lyngfelt A. Gasification inhibition in chemical-looping combustion with solid fuels. Combust Flame. 2011;158:393–400.CrossRefGoogle Scholar
  16. 16.
    Berguerand N, Lyngfelt A. Batch testing of solid fuels with ilmenite in a 10 kW(th) chemical-looping combustor. Fuel. 2010;89:1749–62.CrossRefGoogle Scholar
  17. 17.
    Linderholm C, Lyngfelt A, Cuadrat A, Jerndal E. Chemical-looping combustion of solid fuels—Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel. 2012;102:808–22.CrossRefGoogle Scholar
  18. 18.
    Berguerand N, Lyngfelt A. Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels—testing with South African coal. Fuel. 2008;87:2713–26.CrossRefGoogle Scholar
  19. 19.
    Cuadrat A, Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Adanez J. Effect of operating conditions in chemical-looping combustion of coal in a 500 W-th unit. Int J Greenh Gas Control. 2012;6:153–63.CrossRefGoogle Scholar
  20. 20.
    Cuadrat A, Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Adanez J. The use of ilmenite as oxygen-carrier in a 500 W-th chemical-looping coal combustion unit. Int J Greenh Gas Control. 2011;5:1630–42.CrossRefGoogle Scholar
  21. 21.
    Shen LH, Wu JH, Xiao J, Song QL, Xiao R. Chemical-looping combustion of biomass in a 10 kW(th) reactor with iron oxide as an oxygen carrier. Energy Fuel. 2009;23:2498–505.CrossRefGoogle Scholar
  22. 22.
    Xiao R, Song QL, Zhang SA, Zheng WG, Yang YC. Pressurized chemical-looping combustion of Chinese bituminous coal: cyclic performance and characterization of iron ore-based oxygen carrier. Energy Fuel. 2010;24:1449–63.CrossRefGoogle Scholar
  23. 23.
    Zhao HY, Cao Y, Kang ZZ, Wang YB, Pan WP. Thermal characteristics of Cu-based oxygen carriers. J Therm Anal Calorim. 2012;109:1105–9.CrossRefGoogle Scholar
  24. 24.
    Gao NB, Li AM, Quan C, Qu Y, Mao LY. Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming. Int J Hydrogen Energy. 2012;37:9610–8.CrossRefGoogle Scholar
  25. 25.
    Cao Y, Casenas B, Pan WP. Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier. Energy Fuel. 2006;20:1845–54.CrossRefGoogle Scholar
  26. 26.
    Nordgreen T, Nemanova V, Engvall K, Sjostrom K. Iron-based materials as tar depletion catalysts in biomass gasification: dependency on oxygen potential. Fuel. 2012;95:71–8.CrossRefGoogle Scholar
  27. 27.
    Sarvaramini A, Larachi F. Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals. Fuel. 2012;97:741–50.CrossRefGoogle Scholar
  28. 28.
    Kuhn JN, Zhao ZK, Felix LG, Slimane RB, Choi CW, Ozkan US. Olivine catalysts for methane- and tar-steam reforming. Appl Catal B. 2008;81:14–26.CrossRefGoogle Scholar
  29. 29.
    Fagbemi L, Khezami L, Capart R. Pyrolysis products from different biomasses: application to the thermal cracking of tar. Appl Energy. 2001;69:293–306.CrossRefGoogle Scholar
  30. 30.
    Sun S, Tian H, Zhao Y, Sun R, Zhou H. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresour Technol. 2010;101:3678–84.CrossRefGoogle Scholar
  31. 31.
    Siriwardane R, Tian HJ, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuel. 2009;23:3885–92.CrossRefGoogle Scholar
  32. 32.
    Cho P, Mattisson T, Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide-, nickel oxide-, and manganese oxide-containing oxygen carriers for chemical-looping combustion. Ind Eng Chem Res. 2006;45:968–77.CrossRefGoogle Scholar
  33. 33.
    Mendiara T, Abad A, de Diego LF, Garcia-Labiano F, Gayan P, Adanez J. Use of an Fe-based residue from alumina production as an oxygen carrier in chemical-looping combustion. Energy Fuel. 2012;26:1420–31.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Zhen Huang
    • 1
  • Fang He
    • 1
  • Kun Zhao
    • 1
  • Yipeng Feng
    • 1
  • Anqing Zheng
    • 1
  • Sheng Chang
    • 1
  • Zengli Zhao
    • 1
  • Haibin Li
    • 1
  1. 1.CAS Key Laboratory of Renewable EnergyGuangzhou Institute of Energy Conversion, Chinese Academy of Science (CAS)GuangzhouChina

Personalised recommendations