Skip to main content
Log in

A model-free method for evaluating theoretical error of Kissinger equation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kissinger equation is widely used to calculate the activation energy. However, since a number of assumptions and approximations are introduced in the derivation, the activation energy resolved by this method will have some errors. Here, we propose a model-free evaluation method to estimate the relative error of activation energy of Kissinger equation. Our work shows that the error in activation energy solved by Kissinger equation is not only related to the magnitude of x = E/RT, but also depended on the change of β and ∆x = x 1 − x 2. From the experimental and theoretical analysis on the degradation of polyamide-6, it can be found that the actual error and the theoretical error in the activation energy solved by Kissinger equation are almost same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  2. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;5:464–8.

    Google Scholar 

  3. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  4. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  5. Gao X, Chen D, Dollimore D. The correlation between the value of α at the maximum reaction rate and the reaction mechanisms: a theoretical study. Thermochim Acta. 1993;223:75–82.

    Article  CAS  Google Scholar 

  6. Elder JP. The general applicability of the Kissinger equation in thermal analysis. J Therm Anal. 1985;30:657–69.

    Article  CAS  Google Scholar 

  7. Liopiz J, Romero MM, Jerez A, Laureiro Y. Generalization of the Kissinger equation for several kinetic models. Thermochim Acta. 1995;256:205–11.

    Article  Google Scholar 

  8. Popescu C, Segal E. Critical considerations on the methods for evaluating kinetic parameters from nonisothermal experiments. Int J Chem Kinet. 1998;30:313–27.

    Article  CAS  Google Scholar 

  9. Barrena MI, de Gomez de Salazar JM, Pascual L, Soria A. Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques. J Therm Anal Calorim. 2013;113:713–20.

    Article  CAS  Google Scholar 

  10. Huang MX, Zhou CR, Han XW. Investigation of thermal decomposition kinetics of taurine. J Therm Anal Calorim. 2013;113:589–93.

    Article  CAS  Google Scholar 

  11. Duan LQ, Qiao CF, Wei Q, Xia ZQ, Chen SP, Zhang GC, Zhou CS, Gao SL. Thermodecomposition kinetics and luminescence properties of three lanthanide-based supramolecular compounds with 1H-benzimidazole-2-carboxylic acid. Acta Phys Chim Sin. 2012;28:2783–9.

    CAS  Google Scholar 

  12. Wu GM, Kong ZW, Chen CF, Chen J, Huo SP, Jiang JC. Kinetics of the crosslinking reaction of nonionic polyol dispersion from terpene-maleic ester-type epoxy resin. J Therm Anal Calorim. 2013;111:735–41.

    Article  CAS  Google Scholar 

  13. Zhao LS, Li Q, Cui Y, Wang J, Xu SS, Chen XH, Bi KS. Thermal kinetic studies on the decompositions of cefuroxime lysine in different atmospheres and heating rates. J Therm Anal Calorim. 2012;108:269–73.

    Article  CAS  Google Scholar 

  14. Budrugeac P, Segal E. Applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 2007;88:703–7.

    Article  CAS  Google Scholar 

  15. Li YC, Cheng Y, Ye YH, Shen RQ. Supplement on applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 2010;102:605–8.

    Article  CAS  Google Scholar 

  16. Ortega A, Perez-Maqueda LA, Criado JM. A new point of view evaluation of the temperature integral. Thermochim Acta. 1996;282(283):29–34.

    Article  Google Scholar 

  17. Gao ZM, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversional methods. Thermochim Acta. 2001;369:137–42.

    Article  CAS  Google Scholar 

  18. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  19. Criado JM, Ortega A. Non-isothermal transformation kinetics: remarks on the Kissinger method. J Non-Cryst Solids. 1986;87:302–11.

    Article  CAS  Google Scholar 

  20. Cheng Y. A kinetic method in simultaneous thermal analysis. Anal Methods. 2010;2:1255–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Urs Jörimann in Mettler-Toledo GmbH for offering the thermal analysis data of PA 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Mei, X., Cheng, Y. et al. A model-free method for evaluating theoretical error of Kissinger equation. J Therm Anal Calorim 116, 1153–1157 (2014). https://doi.org/10.1007/s10973-013-3624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3624-z

Keywords

Navigation