Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 3, pp 1153–1157 | Cite as

A model-free method for evaluating theoretical error of Kissinger equation

  • Chuan Huang
  • Xinliang Mei
  • Yi Cheng
  • Yanchun Li
  • Xuqiang Zhu


Kissinger equation is widely used to calculate the activation energy. However, since a number of assumptions and approximations are introduced in the derivation, the activation energy resolved by this method will have some errors. Here, we propose a model-free evaluation method to estimate the relative error of activation energy of Kissinger equation. Our work shows that the error in activation energy solved by Kissinger equation is not only related to the magnitude of x = E/RT, but also depended on the change of β and ∆x = x 1 − x 2. From the experimental and theoretical analysis on the degradation of polyamide-6, it can be found that the actual error and the theoretical error in the activation energy solved by Kissinger equation are almost same.


Thermal analysis Error analysis Activation energy Kissinger equation 



We are grateful to Dr. Urs Jörimann in Mettler-Toledo GmbH for offering the thermal analysis data of PA 6.


  1. 1.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  2. 2.
    Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;5:464–8.Google Scholar
  3. 3.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  4. 4.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.CrossRefGoogle Scholar
  5. 5.
    Gao X, Chen D, Dollimore D. The correlation between the value of α at the maximum reaction rate and the reaction mechanisms: a theoretical study. Thermochim Acta. 1993;223:75–82.CrossRefGoogle Scholar
  6. 6.
    Elder JP. The general applicability of the Kissinger equation in thermal analysis. J Therm Anal. 1985;30:657–69.CrossRefGoogle Scholar
  7. 7.
    Liopiz J, Romero MM, Jerez A, Laureiro Y. Generalization of the Kissinger equation for several kinetic models. Thermochim Acta. 1995;256:205–11.CrossRefGoogle Scholar
  8. 8.
    Popescu C, Segal E. Critical considerations on the methods for evaluating kinetic parameters from nonisothermal experiments. Int J Chem Kinet. 1998;30:313–27.CrossRefGoogle Scholar
  9. 9.
    Barrena MI, de Gomez de Salazar JM, Pascual L, Soria A. Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques. J Therm Anal Calorim. 2013;113:713–20.CrossRefGoogle Scholar
  10. 10.
    Huang MX, Zhou CR, Han XW. Investigation of thermal decomposition kinetics of taurine. J Therm Anal Calorim. 2013;113:589–93.CrossRefGoogle Scholar
  11. 11.
    Duan LQ, Qiao CF, Wei Q, Xia ZQ, Chen SP, Zhang GC, Zhou CS, Gao SL. Thermodecomposition kinetics and luminescence properties of three lanthanide-based supramolecular compounds with 1H-benzimidazole-2-carboxylic acid. Acta Phys Chim Sin. 2012;28:2783–9.Google Scholar
  12. 12.
    Wu GM, Kong ZW, Chen CF, Chen J, Huo SP, Jiang JC. Kinetics of the crosslinking reaction of nonionic polyol dispersion from terpene-maleic ester-type epoxy resin. J Therm Anal Calorim. 2013;111:735–41.CrossRefGoogle Scholar
  13. 13.
    Zhao LS, Li Q, Cui Y, Wang J, Xu SS, Chen XH, Bi KS. Thermal kinetic studies on the decompositions of cefuroxime lysine in different atmospheres and heating rates. J Therm Anal Calorim. 2012;108:269–73.CrossRefGoogle Scholar
  14. 14.
    Budrugeac P, Segal E. Applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 2007;88:703–7.CrossRefGoogle Scholar
  15. 15.
    Li YC, Cheng Y, Ye YH, Shen RQ. Supplement on applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 2010;102:605–8.CrossRefGoogle Scholar
  16. 16.
    Ortega A, Perez-Maqueda LA, Criado JM. A new point of view evaluation of the temperature integral. Thermochim Acta. 1996;282(283):29–34.CrossRefGoogle Scholar
  17. 17.
    Gao ZM, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversional methods. Thermochim Acta. 2001;369:137–42.CrossRefGoogle Scholar
  18. 18.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  19. 19.
    Criado JM, Ortega A. Non-isothermal transformation kinetics: remarks on the Kissinger method. J Non-Cryst Solids. 1986;87:302–11.CrossRefGoogle Scholar
  20. 20.
    Cheng Y. A kinetic method in simultaneous thermal analysis. Anal Methods. 2010;2:1255–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Chuan Huang
    • 1
  • Xinliang Mei
    • 1
  • Yi Cheng
    • 1
  • Yanchun Li
    • 1
  • Xuqiang Zhu
    • 1
  1. 1.Nanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations