Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 2, pp 613–618 | Cite as

Analysis of crystallization in Sb2Se98 composition

  • P. Honcová
  • P. Pilný
  • R. Svoboda
  • J. Shánělová
  • P. Koštál
  • J. Barták
  • J. Málek


Sb2Se98 glass with the particle size of 20–50 μm was studied under non-isothermal conditions using differential scanning calorimeter. Upon heating, this glass shows a single glass transition and three overlapping crystallization peaks. The kinetic analysis of overlapping peaks was done: two peaks were described by autocatalytical model and the last peak showing almost full symmetry was described by Gaussian function.


Sb–Se Chalcogenide glass DSC Crystallization Kinetics Overlapping peaks 



The financial support from the Czech Science Foundation under Project No. P106/11/1152 is gratefully acknowledged.


  1. 1.
    Mikla VI, Mikhalko IP, Nagy YY, Mateleshko AV, Mikla VV. Electronic properties of SbxSe1−x glasses. J Mater Sci. 2000;35:4907–12.CrossRefGoogle Scholar
  2. 2.
    Tonchev D, Kasap SO. Thermal properties of SbxSe100−x glasses studied by modulated temperature differential scanning calorimetry. J Non Cryst Solids. 1999;248:28–36.CrossRefGoogle Scholar
  3. 3.
    Wobst M. Verlauf der mischungslücken der binären systeme silber-tellur, indium-tellur, galium-tellur, thallium-tellur und antimony-selen. Scr Metall. 1971;5:583–6.CrossRefGoogle Scholar
  4. 4.
    Berkes JS, Myers MB. Phase relation and liquid structure in the systém As–Sb2Se3–Se. J Electrochem Soc. 1971;118:1485–91.CrossRefGoogle Scholar
  5. 5.
    Holubová J, Černošek Z, Černošková E. SbxSe100−x system (0 ≤ x≤8) studied by DSC and Raman spectroscopy. J Optoelectron Adv Mater. 2007;1:663–6.Google Scholar
  6. 6.
    Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater Res Bull. 2006;41:1664–72.CrossRefGoogle Scholar
  7. 7.
    El-Zaidia MM, El-Shafi A, Ammar AA, Abo-Ghazala M. Physical properties and structural studies of Se100−xSbx. Thermochim Acta. 1987;116:35–44.CrossRefGoogle Scholar
  8. 8.
    Svoboda R, Málek J. Crystallization kinetics of a-Se, part 1: interpretation of kinetic functions. J Therm Anal Calorim. 2013;. doi: 10.1007/s10973-012-2922-1.Google Scholar
  9. 9.
    Svoboda R, Málek J. Crystallization kinetics of a-Se, part 2: deconvolution of a complex process: the final answer. J Therm Anal Calorim. 2013;. doi: 10.1007/s10973-013-3219-8.Google Scholar
  10. 10.
    Ryschenkow G, Faivre G. Bulk crystallization of liquid selenium. J Cryst Growth. 1988;87:221–35.CrossRefGoogle Scholar
  11. 11.
    Bisault J, Ryschenkow G. Spherulitic branching in the crystallization of liquid selenium. J Cryst Growth. 1991;110:889–909.CrossRefGoogle Scholar
  12. 12.
    Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.Google Scholar
  13. 13.
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  14. 14.
    Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  15. 15.
    Mehta N, Kumar A. Observation of phase separation in some Se–Te–Ag chalcogenide glasses. Mater Chem Phys. 2006;96:73–8.CrossRefGoogle Scholar
  16. 16.
    Othman AA, Amer HH, Osman MA, Dahshan A. Non-isothermal crystallization kinetics study on new amorphous Ga20Sb5S75 and Ga20Sb40S40 chalcogenide glasses. J Non Cryst Solids. 2005;351:130–5.CrossRefGoogle Scholar
  17. 17.
    Abdel-Rahim MA, Abdel-Latief AY, Soltan AS, Abu El-Oyoun M. Crystallization kinetics of overlapping phases in Cu6Ge14Te80 chalcogenide glasses. Physica B. 2002;322:252–61.CrossRefGoogle Scholar
  18. 18.
    Fraser RDB, Suzuki E. Resolution of overlapping bands. Functions for simulating band shapes. Anal Chem. 1969;41:37–9.CrossRefGoogle Scholar
  19. 19.
    Perejón A, Sánchéz-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.CrossRefGoogle Scholar
  20. 20.
    Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111:1045–56.CrossRefGoogle Scholar
  21. 21.
    Moharram AH, Abu El-Oyoun M, Rashad M. Crystallization kinetics of two overlapped phases in As40Te50In10 glass. Thermochim Acta. 2013;555:57–63.CrossRefGoogle Scholar
  22. 22.
    Liška M, Holubová J, Černošková E, Černošek Z, Chromčíková M, Plško A. Nucleation and crystallization of an As2Se3 undercooled melt. Phys Chem Glasses. 2012;53:289–93.Google Scholar
  23. 23.
    Pilný P. OriTas program—solution for kinetic analysis of thermoanalytical data. 2013.; Accessed 28 Dec 2013
  24. 24.
    Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416–42.Google Scholar
  25. 25.
    Avrami M. Kinetics of phase change I—general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  26. 26.
    Avrami M. Kinetics of phase change II—transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.CrossRefGoogle Scholar
  27. 27.
    Málek J, Criado JM. The shape of thermoanalytical curve and its kinetic information content. Thermochim Acta. 1990;164:199–209.CrossRefGoogle Scholar
  28. 28.
    Málek J. The shape of thermoanalytical curves as a function of the reaction kinetics. Thermochim Acta. 1993;222:105–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • P. Honcová
    • 1
  • P. Pilný
    • 2
  • R. Svoboda
    • 2
  • J. Shánělová
    • 2
  • P. Koštál
    • 1
  • J. Barták
    • 2
  • J. Málek
    • 2
  1. 1.Department of Inorganic TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Department of Physical ChemistryUniversity of PardubicePardubiceCzech Republic

Personalised recommendations