Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 2, pp 1055–1060 | Cite as

Isothermal decomposition of K2C2O4

Effect of metal oxide additives on the decomposition kinetic
  • K. Muraleedharan
  • J. J. Mallikassery
  • K. Sarada
  • M. P. Kannan


The effect of semiconducting metal oxide (CuO and TiO2) additives on the kinetics of thermal decomposition of potassium oxalate (K2C2O4) to potassium carbonate has been studied at five different temperatures in the range 793–813 K under isothermal conditions by thermogravimetry (TG). The decomposition is enhanced by CuO (p-type) and suppressed by TiO2 (n-type). The diverse behaviour of K2C2O4 in the presence of different types of oxides in contrast with the like behaviour of K2C2O4 suggests the involvement of different rate determining steps in the decomposition of these solids. The TG data of 2 mass% oxide mixed samples of K2C2O4 were subjected to both model fitting and model-free (isoconversional) kinetic methods of analysis. The model fitting method of analysis shows that the rate law for the decomposition of K2C2O4 (Prout–Tompkins and contracting cylinder models, respectively, for the acceleratory and decay stages) remained unaffected by the additives.


Contracting cylinder equation Isothermal decomposition kinetics Potassium oxalate Prout–Tompkins equation Semiconducting metal oxide additives 


  1. 1.
    Sciora C, Mutin JC. Traitement mecanique des materiaux I—Modification de Phases que provoque le broyage application au cas d’une serie d’oxalates hydrates. J Therm Anal Calorim. 1980;19:365–76.CrossRefGoogle Scholar
  2. 2.
    Sciora C, Mutin JC. Traitement mecanique des materiaux III—Consequences du broyage sur la reactivite ulterieure de quelques hydrates. J Therm Anal Calorim. 1981;20:125–39.CrossRefGoogle Scholar
  3. 3.
    Rossberg M, Khairetdinov EF, Linke E, Boldyrev VV. Effect of mechanical pretreatment on thermal decomposition of silver oxalate under nonisothermal conditions. J Solid State Chem. 1982;41:266–71.CrossRefGoogle Scholar
  4. 4.
    Greenberg E, Settle JL, Hubbard WN. Fluorine bomb calorimetry. IV. The heats of formation of titanium and hafnium tetrafluorides. J Phys Chem. 1962;66:1345–8.CrossRefGoogle Scholar
  5. 5.
    Murhty HSG, Rao MS, Kutty TRN. Thermal decomposition of titanyl oxalates—II: kinetics of decomposition of barium titanyl oxalate. J Inorg Nucl Chem. 1975;7:1875–8.Google Scholar
  6. 6.
    Patra BS, Otta S, Bhattamisra SD. A kinetic and mechanistic study of thermal decomposition of strontium titanyl oxalate. Thermochim Acta. 2006;441:84–8.CrossRefGoogle Scholar
  7. 7.
    L’vov BV. Kinetics and mechanism of thermal decomposition of nickel, manganese, silver, mercury and lead oxalates. Thermochim Acta. 2000;364:99–109.CrossRefGoogle Scholar
  8. 8.
    Duval C. Inorganic thermogravimetric analysis. 2nd ed. Amsterdam: Elsevier; 1963.Google Scholar
  9. 9.
    Galwey AK, Brown ME. An appreciation of the chemical approach of V.V. Boldyrev to the study of the decomposition of solids. J Thermal Anal Caoriml. 2007;90:9–22.CrossRefGoogle Scholar
  10. 10.
    Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.Google Scholar
  11. 11.
    Dollimore D. The thermal decomposition of oxalates. A review. Thermochim Acta. 1987;117:331–63.CrossRefGoogle Scholar
  12. 12.
    Kebede T, Ramana KV, Prasada Rao MS. Thermal decomposition of potassium bis-oxalatodiaquaindate (III) monohydrate. J Chem Sci. 2001;113:275–84.CrossRefGoogle Scholar
  13. 13.
    Gopalakrishnan J, Viswanathan B, Srinivasa V. Preparation and thermal decomposition of some oxomolybdenum(VI) oxalates. J Inorg Nucl Chem. 1970;32:2565–8.CrossRefGoogle Scholar
  14. 14.
    Bamford CH, Tipper CFH. Reactions in the solid state. Amsterdam: Elsevier; 1980.Google Scholar
  15. 15.
    Suba K, Udupa MR. Solid state reaction between dichromates and oxalates. J Therm Anal Calorim. 1989;35:1197–203.CrossRefGoogle Scholar
  16. 16.
    Broadbent D, Dollimore D, Dollimore J. The thermal decomposition of oxalates. Part IX. The thermal decomposition of the oxalate complexes of iron. J Chem Soc A. 1967;4514.Google Scholar
  17. 17.
    Majumdar S, Sharma IG, Bidaye AC, Suri AK. A study on isothermal kinetics of thermal decomposition of cobalt oxalate to cobalt. Thermochim Acta. 2008;473:45–9.CrossRefGoogle Scholar
  18. 18.
    Górski A, Kraśnicka AD. The importance of the CO2 2− anion in the mechanism of thermal decomposition of oxalates. J Therm Anal Calorim. 1987;32:1229–41.CrossRefGoogle Scholar
  19. 19.
    Reddy MVVS, Lingam KV, Rao TKG. Radical studies in oxalate systems: E.S.R. of CO2 in irradiated potassium oxalate monohydrate. Mol Phys. 1981;42:1267–9.CrossRefGoogle Scholar
  20. 20.
    Leiga AG. Decomposition of silver oxalate. II. Kinetics of the thermal decomposition. J Phys Chem. 1966;70:3260–7.CrossRefGoogle Scholar
  21. 21.
    Mallikassery JJ, Muraleedharan K, Kannan MP, Devi TG. Kinetic studies on the thermal decomposition of phosphate doped sodium oxalate. J Therm Anal Calorim. 2013;111:137–44.CrossRefGoogle Scholar
  22. 22.
    Muraleedharan K, Mallikassery JJ, Kannan MP, Mujeeb VMA. Effect of chloride dopant on the kinetics of the thermal decomposition of sodium oxalate. Thermochim Acta. 2012;537:25–30.CrossRefGoogle Scholar
  23. 23.
    Mallikassery JJ, Muraleedharan K, Devi TG, Kannan MP. Effect of pre-compression on the kinetics of thermal decomposition of pure and doped sodium oxalate under isothermal conditions. React Kinet Mech Catal. 2012;106:355–67.CrossRefGoogle Scholar
  24. 24.
    Cupric Oxide Data Sheet. Hummel Croton Inc. 2006. Accessed 01 Feb 2007.Google Scholar
  25. 25.
    Marshall DE. The electrical conductivity of titanium dioxide. Phys Rev. 1942;61:56–62.CrossRefGoogle Scholar
  26. 26.
    Muraleedharan K, Kannan MP. Kinetics of thermal decomposition of sulphate-doped potassium metaperiodate. Thermochim Acta. 1990;158:259–66.CrossRefGoogle Scholar
  27. 27.
    Muraleedharan K, Kannan MP. Effects of dopants on the isothermal decomposition kinetics of potassium metaperiodate. Thermochim Acta. 2000;359:161–8.CrossRefGoogle Scholar
  28. 28.
    Hooley JG. A recording vacuum thermobalance. Can J Chem. 1957;35:374–80.CrossRefGoogle Scholar
  29. 29.
    Mujeeb VMA, Muraleedharan K, Kannan MP, Devi TG. The effect of particle size on the thermal decomposition kinetics of potassium bromate: An isothermal thermogravimetric study. J Therm Anal Calorim. 2012;108:1171–82.CrossRefGoogle Scholar
  30. 30.
    Brown ME. Stocktaking in the kinetic cupboard. J Therm Anal Calorim. 2005;82:665–9.CrossRefGoogle Scholar
  31. 31.
    Muraleedharan K, Kannan MP, Gangadevi T. Effect of metal oxide additives on the thermal decomposition kinetics of potassium metaperiodate. J Therm Anal Calorim. 2010;100:177–81.CrossRefGoogle Scholar
  32. 32.
    Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–97.CrossRefGoogle Scholar
  33. 33.
    Philips BR, Taylor D. Thermal decomposition of potassium metaperiodate. J Chem Soc. 1963;5583–90.Google Scholar
  34. 34.
    Solymosi F. Structure and stability of salts of halogen oxyacids in the solid phase. London: Wiley; 1977.Google Scholar
  35. 35.
    Furuichi R, Ishii T, Yamanaka Z, Shimokawabe M. Effect of α-Fe2O3 additive on the thermal decomposition of salts of halogen oxoacids, oxalates, azide, permanganate, and oxides. Thermochim Acta. 1981;51:245–67.CrossRefGoogle Scholar
  36. 36.
    Furuichi R, Ishii T, Kobayashi K. Phenomenological study of the catalytic thermal decomposition of potassium perchlorate by iron(II) oxides with different preparing histories. J Therm Anal. 1974;6:305–20.CrossRefGoogle Scholar
  37. 37.
    Joseph J, Nair TDR. Effect of metal oxide catalysts on thermal decomposition of potassium bromate. J Therm Anal. 1978;14:271–9.CrossRefGoogle Scholar
  38. 38.
    Leiga AG. Decomposition of silver oxalate. I. Microscopic observations of partially decomposed crystals. J Phys Chem. 1966;70:3254–9.CrossRefGoogle Scholar
  39. 39.
    Episfanov GI. Solid state physics, chapter 8. Moscow: Mir Publishers; 1979.Google Scholar
  40. 40.
    Schroder DK. Semiconductor material and device characterization. New York: Wiley; 1990.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • K. Muraleedharan
    • 1
  • J. J. Mallikassery
    • 1
  • K. Sarada
    • 1
  • M. P. Kannan
    • 1
  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia

Personalised recommendations