Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 1, pp 359–366 | Cite as

Effect of nanosilica on thermal oxidative degradation of SBR

  • Lili Guo
  • Guangsu Huang
  • Jing Zheng
  • Guangxian Li
Article

Abstract

The effect of silica content on thermal oxidative stability of styrene–butadiene rubber (SBR)/silica composites has been studied. Morphologies of silica in SBR with different contents are investigated by scanning electron microscopy, which indicates that silica can well disperse in SBR matrix below the content of 40 %, otherwise aggregates or agglomerates will generate. Composites with around 40 % silica content show excellent mechanical properties and retention ratios after aging at 85 °C for 6 days. The values of activation energy (E a) of pure SBR and its composites are calculated by Kissinger and Flynn–Wall–Ozawa methods based on thermogravimetric (TG) results, which suggests that composite with about 20 % silica has minimum E a, and composite with 30–40 % silica has maximum E a. According to TG curves, it is found that silica can suppress the formation of char leading to decline in stability to some extent. On the other side, silica also has positive effect on improving thermal stability of the matrix as filler. Thus, the SBR/silica composites with silica content of 30–40 % can possess both excellent resistance to thermal oxidative degradation and superior mechanical properties.

Keywords

Nanosilica content SBR Thermal degradation Activation energy Stability 

Notes

Acknowledgements

This work is financially supported by the National Science Foundation of China (Grant No. 51133005).

References

  1. 1.
    Mohsen M, Salam MHA, Ashry A, Ismail A, Ismail H. Positron annihilation spectroscopy in carbon black–silica–styrene butadiene rubber (SBR) composites under deformation. Polym Degrad Stab. 2005;87:381–8.CrossRefGoogle Scholar
  2. 2.
    Yang QZ. Contemporary rubber technology. Peking: Sinopec Publications; 1997. p. 25–33 154.Google Scholar
  3. 3.
    Xu JB, Zhang AM, Zhou T, Cao XJ, Xie ZN. A study on thermal oxidation mechanism of styrene ebutadiene estyrene block copolymer (SBS). Polym Degrad Stab. 2007;92:1682–91.CrossRefGoogle Scholar
  4. 4.
    Munteanu SB, Brebu M, Vasile C. Thermal and thermo-oxidative behaviour of butadiene–styrene copolymers with different architectures. Polym Degrad Stab. 2005;89:501–12.CrossRefGoogle Scholar
  5. 5.
    Allen NS, Edge M, Wilkinson A, Liauwa CM, Mourelatou D, Barrio J, Martínez-Zaport MA. Degradation and stabilisation of styrene–ethylene–butadiene–styrene (SEBS) block copolymer. Polym Degrad Stab. 2000;71:113–22.CrossRefGoogle Scholar
  6. 6.
    Hu XZ, Luo ZB. Wavelength sensitivity of photooxidation of styrene-butadiene-styrene copolymer. Polym Degrad Stab. 1995;48:99–102.CrossRefGoogle Scholar
  7. 7.
    Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.CrossRefGoogle Scholar
  8. 8.
    Mittal V. Polymer layered silicate nanocomposites: a review. Material. 2009;2:992–1057.CrossRefGoogle Scholar
  9. 9.
    Zou DQ, Yoshida H. Size effect of silica nanoparticles on thermal decomposition of PMMA. J Therm Anal Calorim. 2010;99:21–6.CrossRefGoogle Scholar
  10. 10.
    García N, Corrales T, Guzmán J, Tiemblo P. Understanding the role of nanosilica particle surfaces in the thermal degradation of nanosilica–poly(methyl methacrylate) solution-blended nanocomposites: from low to high silica concentration. Polym Degrad Stab. 2007;92:635–43.CrossRefGoogle Scholar
  11. 11.
    Janowska G, Kucharska-Jastrząbek A, Rybiński P. Thermal stability, flammability and fire hazard of butadiene–acrylonitrile rubber nanocomposites. J Therm Anal Calorim. 2011;103:1039–46.CrossRefGoogle Scholar
  12. 12.
    García N, Hoyos M, Guzmán J, Tiemblo P. Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polym Degrad Stab. 2009;94:39–48.CrossRefGoogle Scholar
  13. 13.
    Choudhury A, Bhowmick AK, Ong C, Soddemann M. Effect of various nanofillers on thermal stability and degradation kinetics of polymer nanocomposites. J Nanosci Nanotechnol. 2010;10:5056–71.CrossRefGoogle Scholar
  14. 14.
    Chen SG, Yu HY, Ren W, Zhang Y. Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochim Acta. 2009;491:103–8.CrossRefGoogle Scholar
  15. 15.
    Subramaniam K, Das A, Häußler L, Harnisch C, Stöckelhuber KW, Heinrich G. Enhanced thermal stability of polychloroprene rubber composites with ionic liquid modified MWCNTs. Polym Degrad Stab. 2012;97:776–85.CrossRefGoogle Scholar
  16. 16.
    Mittal V. Polymer nanotube nanocomposites: synthesis, properties, and applications, vol. 11. Wiley-Scrivener; 2010.Google Scholar
  17. 17.
    Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.CrossRefGoogle Scholar
  18. 18.
    Bourbigot S, Gilmana JW, Wilkie CA. Kinetic analysis of the thermal degradation of polystyrene–montmorillonite nanocomposite. Polym Degrad Stab. 2004;84:483–92.CrossRefGoogle Scholar
  19. 19.
    Marosi G, Márton A, Szép A, Csontos I, Keszei S, Zimonyi E, Toth A, Almeras X, Bras ML. Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer. Polym Degrad Stab. 2003;82:379–85.Google Scholar
  20. 20.
    Du ML, Guo BC, Jia DM. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J. 2006;42:1362–9.CrossRefGoogle Scholar
  21. 21.
    Lakshmi MS, Narmadha B, Reddy BSR. Enhanced thermal stability and structural characteristics of different MMT-clay/epoxy-nanocomposite materials. Polym Degrad Stab. 2008;93:201–13.CrossRefGoogle Scholar
  22. 22.
    Lomakin SM, Novokshonova LA, Brevnov PN, Shchegolikhin AN. Thermal properties of polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization. J Mater Sci. 2008;43:1340–53.CrossRefGoogle Scholar
  23. 23.
    Wang MJ, Lu SX, Mahmud K. Carbon–silica dual-phase filler, a new-generation reinforcing agent for rubber. Part VI. Time–temperature superposition of dynamic properties of carbon–silica-dual-phase-filler-filled vulcanizates. J Polym Sci B. 2000;38:1240–9.CrossRefGoogle Scholar
  24. 24.
    Choi SS. Filler–polymer interactions in both silica and carbon black-filled styrene–butadiene rubber compounds. J Polym Sci B. 2001;39:439–45.CrossRefGoogle Scholar
  25. 25.
    Mélé P, Marceau S, Brown D, Puydt Y, Albérola ND. Reinforcement effects in fractal-structure-filled rubber. Polymer. 2002;43:5577–86.CrossRefGoogle Scholar
  26. 26.
    Arrighi V, McEwena IJ, Qiana H, Serrano Prieto MB. The glass transition and interfacial layer in styrene–butadiene rubber containing silica nanofiller. Polymer. 2003;44:6259–66.CrossRefGoogle Scholar
  27. 27.
    Alberola ND, Benzarti K, Bas C, Bomal Y. Interface effects in elastomers reinforced by modified precipitated silica. Polym Compos. 2001;22:312–25.CrossRefGoogle Scholar
  28. 28.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  29. 29.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  30. 30.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  31. 31.
    Heinrich G, Vilgis TA. Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules. 1993;26:1109–19.CrossRefGoogle Scholar
  32. 32.
    López-Manchado MA, Valentín JL, Carretero J, Barroso F, Arroyo M. Rubber network in elastomer nanocomposites. Eur Polym J. 2007;43:4143–50.CrossRefGoogle Scholar
  33. 33.
    Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S. Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A. 2009;40:309–16.CrossRefGoogle Scholar
  34. 34.
    Esthappan SK, Kuttappan SK, Joseph R. Effect of titanium dioxide on the thermal ageing of polypropylene. Polym Degrad Stab. 2012;97:615–20.CrossRefGoogle Scholar
  35. 35.
    Maiti M, Mitra S, Bhowmick AK. Effect of nanoclays on high and low temperature degradation of fluoroelastomers. Polym Degrad Stab. 2008;93:188–200.CrossRefGoogle Scholar
  36. 36.
    Kuljanin-Jakovljević J, Marinović-Cincović M, Stojanović Z, Krklješ A, Abazović ND, Čomor MI. Thermal degradation kinetics of polystyrene/cadmium sulfide composites. Polym Degrad Stab. 2009;94:891–7.CrossRefGoogle Scholar
  37. 37.
    Schnabel W, Levchik GF, Wilkie CA, Jiang DD, Levchik SV. Thermal degradation of polystyrene, poly(1,4-butadiene) and copolymers of styrene and 1,4-butadiene irradiated under air or argon with 60Co-γ-rays. Polym Degrad Stab. 1999;63:365–75.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Lili Guo
    • 1
  • Guangsu Huang
    • 1
  • Jing Zheng
    • 1
  • Guangxian Li
    • 1
  1. 1.State Key Lab of Polymer Materials Engineering, College of Polymer Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations