Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 1, pp 279–286 | Cite as

The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants

  • Abderrahmane Mezroua
  • Kamel Khimeche
  • Michel H. Lefebvre
  • Mokhtar Benziane
  • Djalal Trache


The influence of porous ammonium perchlorate (POAP) on the thermomechanical and combustion behavior of solid rocket propellants based on polyvinylchloride binder has been investigated. Differential scanning calorimetry, differential thermogravimetry, dynamic mechanical thermal analysis, and scanning electronic microscopy measurements were used for thermomechanical and thermal decomposition properties assessment. The results obtained indicate that lower glass transitions of the propellants and catalytic effect of combustion are obtained with POAP.


Composite propellants Porous ammonium perchlorate Polyvinylchloride (PVC) binder DMA DSC DTG Glass transition 



Normal ammonium perchlorate


Porous ammonium perchlorate




Composite solid propellant formulated with normal ammonium perchlorate


Composite solid propellant formulated with porous ammonium perchlorate


Butyl diglycol


Dioctyl phthalate


  1. 1.
    De la Fuente JL. An analysis of the thermal aging behaviour in high-performance energetic composites through the glass transition temperature. Polym Degrad Stab. 2009;94:664–9.CrossRefGoogle Scholar
  2. 2.
    Kohga M, Hagihara Y. Burning behavior of composite propellant containing fine porous ammonium perchlorate. Propellant Explos Pyrotech. 1998;23:182–7.CrossRefGoogle Scholar
  3. 3.
    Kadiresh PN, Sridhar BTN. Experimental study on ballistic behavior of an aluminized AP/HTPB propellant during accelerated aging. J Therm Anal Calorim. 2010;100:331–5.CrossRefGoogle Scholar
  4. 4.
    Sun YL, Li SF, Ding DH. Effect of ammonium oxalate/strontium carbonate on the burning rate characteristics of composite propellants. J Therm Anal Calorim. 2006;86:497–503.CrossRefGoogle Scholar
  5. 5.
    Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, Suárez-Iha MEV. Thermal degradation of a composite solid propellant examined by DSC. Kinetic study. J Therm Anal Calorim. 2004;75:551–7.CrossRefGoogle Scholar
  6. 6.
    Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, Suárez-Iha MEV. TG studies of composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.CrossRefGoogle Scholar
  7. 7.
    Davies JV, Jacobs PWM, Russel-Jones A. Thermal decomposition of ammonium Perchlorate. Trans Fraday Soc. 1967;63:1737.CrossRefGoogle Scholar
  8. 8.
    Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.CrossRefGoogle Scholar
  9. 9.
    Jacobs PW, Whithead HM. Thermal decomposition and combustion of ammonium perchlorate. Chem Rev. 1969;4:551–90.CrossRefGoogle Scholar
  10. 10.
    Dorota M, Alexander K, Urszula F, Bogdan S, Paul M, David V, Jacek K. Low-temperature thermal decomposition of large single crystals of ammonium perchlorate. Chem Phys Lett. 2008;454:233–6.CrossRefGoogle Scholar
  11. 11.
    Keenan AG, Siegmund RF. Thermal decomposition of ammonium perchlorate. Q Rev Chem Soc Lond. 1969;3(23):430–52.CrossRefGoogle Scholar
  12. 12.
    Jacobs PW, Ng WL. Thermal decomposition of ammonium perchlorate single crystals. J Solid State Chem. 1974;4(9):315–22.CrossRefGoogle Scholar
  13. 13.
    Singh G, Prem Felix S, Pandey DK. Studies on energetic compounds part 37: kinetics of thermal decomposition of perchlorate complexes of some transition metals with ethylenediamine. Thermochim Acta. 2004;411:61–71.CrossRefGoogle Scholar
  14. 14.
    Kraeutle KJ. The thermal decomposition of orthorhombic ammonium perchlorate single crystals. J Phys Chem. 1970;74(6):1350–6.CrossRefGoogle Scholar
  15. 15.
    Bolodyrev VV, Alexandrov VV. Thermal decomposition of ammonium perchlorate. Combust Flame. 1970;1(15):71–8.CrossRefGoogle Scholar
  16. 16.
    Bircumshaw LL, Newman BH. Proceeding of the royal society. 1954. p. 227/115–132.Google Scholar
  17. 17.
    Leu AL, Yeh TF, Chang FM, Liu CS, Huang CC. Burning behavior of composite solid propellant containing porous ammonium perchlorate. Propellants Explos Pyrotech. 1989;14:108–12.CrossRefGoogle Scholar
  18. 18.
    Lista EL. Solid porous, coated oxidizer, method of preparation and novel propellant. US Patent 3,830,672; 1974.Google Scholar
  19. 19.
    Klager K, Manfred RK, Lista EL. Burning behavior of porous ammonium perchlorate. In: Proceeding of 10th international annual conference of ICT, Karlsruhe; 1979. p. 283–97.Google Scholar
  20. 20.
    Leu AL, Wu RJ. Formulation effects on the burning rate of aluminized solid propellants. J Propuls Power. 1988;1(4):22–6.CrossRefGoogle Scholar
  21. 21.
    Mezroua A, Hamel M, Medaour Y. Topograhy of the process of thermal decomposition of ammonium perchlorate under confinement. In: Proceeding of 41st international annual conference of ICT, Karlsruhe; 2010. p. 77/1–8.Google Scholar
  22. 22.
    Parr®. Introduction to bomb calorimetry No. 202M, Moline, II; 1978.Google Scholar
  23. 23.
    Al-Harthi A, Williams A. Effect of fuel binder and oxidizer particle diameter on the combustion of ammonium perchlorate based propellants. Fuel. 1998;77(13):1451–68.CrossRefGoogle Scholar
  24. 24.
    Longuet B, Gillard P. Experimental investigation on the heterogonous kinetic process of the low thermal decomposition of ammonium perchlorate particles. Propellants Explos Pyrotech. 2009;34:59–71.CrossRefGoogle Scholar
  25. 25.
    Kishore K, Sunitha MR. Effect of transition metal oxides on decomposition and deflagration of composite solid propellant systems: a survey. AIAAJ. 1979;17(10):1118–25.CrossRefGoogle Scholar
  26. 26.
    Shin-Ming S, Sun-I C, Bor-Horng W. The thermal decomposition of ammonium perchlorate (AP) containing a burning-rate modifier. Thermochim Acta. 1993;223:135–43.CrossRefGoogle Scholar
  27. 27.
    An-Lu L, Tsao-Fa Y. The thermal behavior of porous residual ammonium perchlorate. Thermochim Acta. 1991;186:53–61.CrossRefGoogle Scholar
  28. 28.
    Sara C, Manfred AB, Kalus M, Luciano G. Ageing of HTPB/Al/AP rocket propellant formulations investigated by DMA measurements, Sol-Gel and GPC analysis In: Proceeding of 41st international annual conference of ICT, Karlsruhe; 2010. p. 42/1–38.Google Scholar
  29. 29.
    Lessard P, France B. Effect of porosity on the burn rate of a gas-generating composition. Propellants Explos Pyrotech. 2003;28:132–7.CrossRefGoogle Scholar
  30. 30.
    Banerjee S, Chakravarthy SR. Ammonium perchlorate-based composite solid propellant formulations with plateau burning rate trends. Combust Explos Shock Waves. 2007;43:435–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Abderrahmane Mezroua
    • 1
  • Kamel Khimeche
    • 1
  • Michel H. Lefebvre
    • 2
  • Mokhtar Benziane
    • 1
  • Djalal Trache
    • 1
  1. 1.Ecole Militaire Polytechnique (EMP)AlgerAlgeria
  2. 2.Laboratory for Energetic Materials, Department of ChemistryRoyal Military AcademyBrusselsBelgium

Personalised recommendations