Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1321–1327 | Cite as

Antimony potassium tartrate

A novel single source precursor for the preparation of Sb2O3, KSb3O5, K0.51Sb0.67IIISb2VO6.26, and KSbO3
  • J. R. Reddy
  • G. Ravi
  • P. Suresh
  • Naveen Kumar Veldurthi
  • Radha Velchuri
  • M. Vithal


Single source precursor, antimony potassium tartrate, was used for the preparation of Sb2O3, KSb3O5, K0.51Sb 0.67 III Sb 2 V O6.26, and KSbO3. Antimony trioxide (Sb2O3) was prepared by hydrothermal method, while potassium antimony oxides (KSbO3, K0.51Sb 0.67 III Sb 2 V O6.26, and KSbO3) were obtained from the thermal decomposition of antimony potassium tartrate. All the compounds were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR), UV–Vis diffuse reflectance spectra, and scanning electron microscopy (SEM). The decomposition process of antimony potassium tartrate with temperature was given. The product formation at different temperatures of thermal decomposition was monitored by PXRD and FT-IR. The TG profile of antimony potassium tartrate shows mass loss at three regions. The infrared spectra of parent and decomposed products gave characteristic Sb-O bands. The band gap energy of decomposed products was obtained. The SEM diagrams of Sb2O3 show different morphologies. Direct solid state preparation of KSb3O5 and K0.51Sb 0.67 III Sb 2 V O6.26 under identical experimental conditions was unsuccessful.


Single source precursor Decomposition Antimony potassium tartrate Powder XRD FT-IR 



Authors would like to thank Department of Science & Technology (DST), New Delhi for financial and infrastructure support under PURSE and FIST schemes, respectively. One of us (J.R. Reddy) thanks to Council of Scientific & Industrial Research (CSIR), New Delhi for the award of Junior Research Fellowship.


  1. 1.
    Lu P, Wu C, Li Y, Yu Z, Cao H, Wang S. Investigation on structural, electronic, and magnetic properties of Mn-doped Ga12N12clusters. J Mater Sci. 2013;48:8552–8.CrossRefGoogle Scholar
  2. 2.
    Mahlambi MM, Mishra AK, Mishra SB, Krause RW, Mamba BB, Raichur AM. Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. J Therm Anal Calorim. 2012;110:847–55.CrossRefGoogle Scholar
  3. 3.
    Rogalski A. Semiconductor detectors and focal plane arrays for far-infrared imaging. Optoelectron Rev. 2013;21:406–26.Google Scholar
  4. 4.
    Yun J, Kim HI, Lee YS. A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst. J Mater Sci. 2013;48:8320–8.CrossRefGoogle Scholar
  5. 5.
    Law M, Greene L, Johnson JC, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nat Mater. 2005;4:455–9.CrossRefGoogle Scholar
  6. 6.
    Singh S, Srivastava P, Kapoor IPS, Singh G. Preparation, characterization, and catalytic activity of rare earth metal oxide nanoparticles. J Therm Anal Calorim. 2013;111:1073–82.CrossRefGoogle Scholar
  7. 7.
    Lee KJ, Maqbool MS, Kumar PA, Song KH, Ha HP. Enhanced activity of ceria loaded Sb-V2O5/TiO2 catalysts for NO reduction with ammonia. Catal Lett. 2013;143:988–95.CrossRefGoogle Scholar
  8. 8.
    Tigau N, Ciupina V, Prodan G. Structural, optical and electrical properties of Sb2O3 thin films with different thickness. J Optoelectron Adv Mater. 2006;8:37–42.Google Scholar
  9. 9.
    Xue MZ, Fu WZ. Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide. Electrochem Commun. 2006;8:1250–6.CrossRefGoogle Scholar
  10. 10.
    Ozawa K, Sakka Y, Amamo A. Preparation and electrical conductivity of three types of antimonic acid films. J Mater Res. 1998;13:830–3.CrossRefGoogle Scholar
  11. 11.
    Zhang YX, Li GH, Zhang LD. Growth of Sb2O3 nanotubes via a simple surfactant-assisted solvothermal process. Chem Lett. 2004;33:334–5.CrossRefGoogle Scholar
  12. 12.
    Bell RG, Weller MT. Structure of the proton conductor, cubic HSbO3·xH2O. Solid State Ionics. 1988;28–30:601–6.CrossRefGoogle Scholar
  13. 13.
    Chowdhry U, Barkley JR, English AD, Sleight AW. New inorganic proton conductors. Mater Res Bull. 1982;17:917–33.CrossRefGoogle Scholar
  14. 14.
    Ozawa K, Wang J, Ye J, Sakka Y, Amano M. Preparation and some electrical properties of yttrium-doped antimonic acids. Chem Mater. 2003;15:928–34.CrossRefGoogle Scholar
  15. 15.
    England WA, Cross MG, Hamnett A, Wiseman PJ, Goodenough JB. Fast proton conduction in inorganic ion-exchange compounds. Solid State Ionics. 1980;1:231–49.CrossRefGoogle Scholar
  16. 16.
    Ye C, Wang G, Kong M, Zhang L. Controlled synthesis of Sb2O3 nanoparticles, nanowires, and nanoribbons. J Nano Mater. 2006;2006:1–5.Google Scholar
  17. 17.
    Ge S, Wang Q, Shao Q, Zhao Y, Yang X, Wang X. Hydrothermal synthesis of morphology-controllable Sb2O3 microstructures: hollow spindle-like and cobblestone-like microstructures. Appl Surf Sci. 2011;257:3657–65.CrossRefGoogle Scholar
  18. 18.
    Abdullaha AH, Noora NHM, Ramli I, Hashim M. Effect of precipitation route on the properties of antimony trioxide. Mater Chem Phys. 2008;111:201–4.CrossRefGoogle Scholar
  19. 19.
    Brower WS, Minor DB, Parker HS, Roth RS, Waring JL. Flux synthesis of cubic potassium antimonate. Mater Res Bull. 1974;9:1045–52.CrossRefGoogle Scholar
  20. 20.
    Shimada S, Kodaira K. Transformation of ilmenite KSbO3 and NaSbO3 to cubic phase and thermal stability of cubic phase. Mater Res Bull. 1986;21:1495–501.CrossRefGoogle Scholar
  21. 21.
    Piffard Y, Dion M, Tournoux M. Structure cristalline du pyrochlore, K0.51SB0.64IIISb2vO6.26. Acta Cryst. 1978;34:366–8.CrossRefGoogle Scholar
  22. 22.
    Knyazeva AV, Tananaev IG, Kuznetsova NY, Smirnova NN, Letyanina IA, Ladenkova IV. Crystal structure and thermodynamic properties of potassium antimony tungsten oxide. Thermochim Acta. 2010;499:155–9.CrossRefGoogle Scholar
  23. 23.
    Rodrigues EC, Carvalho CT, de Siqueira AB, Bannach G, Ionashiro M. Synthesis, characterization and thermal behaviour on solid tartrates of some bivalent metal ions. Thermochim Acta. 2009;496:156–60.CrossRefGoogle Scholar
  24. 24.
    Cody CA, Dicarlol L, Darlington RK. Vibrational and thermal study of antimony oxides. Inorg Chem. 1979;18:1572–6.CrossRefGoogle Scholar
  25. 25.
    Zhang L, Pan CL, Liu Y. Gram-scale synthesis and optical properties of Sb2O3 octahedron microcrystals. Mater Lett. 2012;75:29–32.CrossRefGoogle Scholar
  26. 26.
    Chitrakar R, Abe M. Synthetic Inorganic ion exchange materials XLVII. Preparation of new crystalline antimonic acid HSbO3.0.12H2O. Mater Res Bull. 1988;23:1231–40.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • J. R. Reddy
    • 1
  • G. Ravi
    • 1
  • P. Suresh
    • 1
  • Naveen Kumar Veldurthi
    • 1
  • Radha Velchuri
    • 1
  • M. Vithal
    • 1
  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia

Personalised recommendations