Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1453–1463 | Cite as

Thermodynamic properties of crystalline magnesium zirconium phosphate

  • V. I. Pet’kov
  • A. S. Shipilov
  • A. V. Markin
  • N. N. Smirnova


Heat capacity \( C_{\text{p}}^{^\circ } \)(T) of crystalline magnesium zirconium phosphate was measured between 6 and 815 K. The experimental data obtained were used to calculate the standard thermodynamic functions \( C_{\text{p}}^{^\circ } \)(T), H°(T) − H°(0), S°(T), G°(T) − H°(0) over the temperature ranging from T  0 to 810 K and standard entropy of formation at 298.15 K. The fractal dimension of Mg0.5Zr2(PO4)3 was calculated from experimental data on the low-temperature (6 ≤ T/K ≤ 50) heat capacity, and the topology of the phosphate’s structure was estimated. Thermodynamic properties of structurally related phosphates M0.5Zr2(PO4)3 (M = Mg, Ca, Sr, Ba, Ni) were compared.


Calorimetry Heat capacity Crystalline magnesium zirconium phosphate Thermodynamic functions 



This work was financially supported by the Russian Foundation for Basic Research (Project No. 14-03-00021).


  1. 1.
    Pet‘kov VI. Complex phosphates formed by metal cations in oxidation states I and IV. Russ Chem Rev. 2012;81:606–37.CrossRefGoogle Scholar
  2. 2.
    Pet‘kov VI, Asabina EA. Thermophysical properties of NZP ceramics (a review). Glass Ceram. 2004;61:233–9.CrossRefGoogle Scholar
  3. 3.
    Anantharamulu N, Koteswara Rao K, Rambabu G, et al. A wide-ranging review on Nasicon type materials. J Mater Sci. 2011;46:2821–37.CrossRefGoogle Scholar
  4. 4.
    Scheetz BE, Agrawal DK, Breval E, Roy R. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: a review. Waste Manag. 1994;14:489–505.CrossRefGoogle Scholar
  5. 5.
    Pet‘kov VI, Sukhanov MV, Ermilova MM, et al. Development and synthesis of bulk and membrane catalysts based on framework phosphates and molybdates. Russ J Appl Chem. 2010;83:1731–41.CrossRefGoogle Scholar
  6. 6.
    Pet‘kov VI, Kurazhkovskaya VS, Orlova AI, Spiridonova ML. Synthesis and crystall chemical characteristics of the structure of M0.5Zr2(PO4)3 phosphates. Cryst Rep. 2002;47:736–43.CrossRefGoogle Scholar
  7. 7.
    Pet‘kov VI, Orlova AI, Dorokhova GI, YaV Fedotova. Synthesis and structure of zirconium and 3d-transition metal phosphates M0.5Zr2(PO4)3 (M = Mn, Co, Ni, Cu, Zn). Cryst Rep. 2000;45:30–4.CrossRefGoogle Scholar
  8. 8.
    Gobechiya ER, YuK Kabalov, Pet‘kov VI, Sukhanov MV. Crystal structures of double cesium zirconium and barium zirconium orthophosphates. Cryst Reports. 2004;49:741–6.CrossRefGoogle Scholar
  9. 9.
    Pet‘kov VI, Markin AV, Shchelokov IA, et al. The heat capacity and thermodynamic functions of Ca0.5Zr2(PO4)3 crystalline phosphate from T → 0 to 650 K. Russ J Phys Chem. 2010;84:541–7.CrossRefGoogle Scholar
  10. 10.
    Pet‘kov VI, Markin AV TA, Bykova TA, et al. The thermodynamic properties of crystalline Sr0.5Zr2(PO4)3 phosphate from T → 0 to 665 K. Russ J Phys Chem. 2007;81:1185–91.CrossRefGoogle Scholar
  11. 11.
    Pet‘kov VI, Shchelokov IA, Markin AV, et al. Thermodynamic properties of crystalline phosphate Ba0.5Zr2(PO4)3 over the temperature range from T  0 to 610 K. J Therm Anal Calorim. 2010;102:1147–54.CrossRefGoogle Scholar
  12. 12.
    Pet‘kov VI, Markin AV, Shchelokov IA, et al. The heat capacity and standard thermodynamic functions of Ni0.5Zr2(PO4)3 phosphate over the temperature range from T → 0 to 664 K. Russ J Phys Chem. 2007;81:1728–33.CrossRefGoogle Scholar
  13. 13.
    Chemical reagents and high-pure chemicals (Catalog). Moscow: REACHEM, Khimia; 1990.Google Scholar
  14. 14.
    Hillebrand W, Lundell G, editors. Applied inorganic analysis. NY: John Wiley & Sons; 1953.Google Scholar
  15. 15.
    Gobechiya ER, Sukhanov MV, Pet‘kov VI, YuK Kabalov. Crystal structure of the double magnesium zirconium orthophosphate at temperatures of 298 and 1023 K. Cryst Reports. 2008;53:53–9.CrossRefGoogle Scholar
  16. 16.
    Varuschenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.CrossRefGoogle Scholar
  17. 17.
    Hohne GWH, Hemminger WF, Flammersheim HF. Differential scanning calorimetry. Heidelberg: Springer; 2003. p. 299.CrossRefGoogle Scholar
  18. 18.
    Drebushchak VA. Calibration coefficient of heat-flow DSC part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79(1):213–8.CrossRefGoogle Scholar
  19. 19.
    Titov VA, Chernyavskii LI, Voronin IA, Komilov AN. On the spline approximation of low-temperature calorimetry data. Russ J Phys Chem. 2006;80:1025–8.CrossRefGoogle Scholar
  20. 20.
    Yakubov TS. About heat capacity of solids having fractal character. Dokl Akad Nauk SSSR. 1990;310:145–9.Google Scholar
  21. 21.
    Isotov AD, Shebershneva OV, Gavrichev KS. Fractal model of low-temperatura heat capacity. All-Russia conference on thermal analysis and calorimetry. Kazan; 1996. p. 200–202.Google Scholar
  22. 22.
    Glushko VP. Thermal constants of substances. Moskow Nauka. 1965–1982;1–10.Google Scholar
  23. 23.
    Cox JD, Wagman DD, Medvedev VA. CODATA Key values for thermodynamics. Washington DC: Hemisphere Publishing Co; 1989.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • V. I. Pet’kov
    • 1
  • A. S. Shipilov
    • 1
  • A. V. Markin
    • 1
  • N. N. Smirnova
    • 1
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations