Synthesis and thermal properties of new dumbbell-shaped isobutyl-substituted POSSs linked by aliphatic bridges

  • Ignazio Blanco
  • Lorenzo Abate
  • Francesco A. Bottino


Five new dumbbell-shaped polyhedral oligomeric silsesquioxanes (POSSs), in which two identical silicon cages are linked to various length aliphatic bridges, were prepared by corner capping reaction between hepta isobutyltricycloheptasiloxane trisilanol (HIBT) and suitable bis(triethoxysilyl) derivatives. The products obtained were characterized by elemental analysis and 1H NMR spectroscopy, and the results were in very good agreement with the expected ones. Degradations were carried out in flowing nitrogen and in static air atmosphere, and temperatures at 5 % mass loss (T 5 %) and residues at 700 °C were determined to investigate the resistance to the thermal degradation. The T 5 % values were lower in oxidative atmosphere than in inert environment, and increased linearly as a function of organic bridge length in either used atmosphere. The residues at 700 °C were higher in static air than in flowing nitrogen. The results obtained for various dumbbell-shaped POSSs were discussed and compared with each other. A comparison with the results previously obtained with the corresponding un-bridged phenyl, hepta isobutyl-POSSs showed a higher resistance to the thermal degradation of bridged POSSs.


Dumbbell-shaped POSS Aliphatic bridge Corner capping reaction Thermal properties 


  1. 1.
    Inagaki S, Guan S, Ohsuna T, Terasaki O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature. 2002;416:304–6.CrossRefGoogle Scholar
  2. 2.
    Kawakami Y, Li Y, Liu Y, Seino M, Pakjamsai C, Oishi M, Cho YH, Imae I. Control of molecular weight, stereochemistry and higher order structure of siloxane-containing polymers and their functional design. Macromol Res. 2004;12:156–71.CrossRefGoogle Scholar
  3. 3.
    Harrison PG. Silicate cages: precursors to new materials. J Organomet Chem. 1997;547:141–7.CrossRefGoogle Scholar
  4. 4.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv Polym Sci. 2006;201:225–96.CrossRefGoogle Scholar
  5. 5.
    Baney RH, Itoh M, Sakakibara S, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.CrossRefGoogle Scholar
  6. 6.
    Sellinger A, Laine RM. Silsesquioxanes as synthetic platforms. Thermally curable and photocurable inorganic/organic hybrids. Macromolecules. 1996;29:2327–30.CrossRefGoogle Scholar
  7. 7.
    Laine RM. Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem. 2005;15:3725–44.CrossRefGoogle Scholar
  8. 8.
    Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.CrossRefGoogle Scholar
  9. 9.
    De Armitt C, Wheeler P. POSS keeps high temperature plastics flowing. Plast Addit Compd. 2008;10:36–9.CrossRefGoogle Scholar
  10. 10.
    Haddad TS, Choe E, Lichtenhan JD. Hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) polymers. Mater Res Soc Symp Proc. 1996;435:25–32.CrossRefGoogle Scholar
  11. 11.
    Phillips SH, Blanski RL, Svejda SA, Haddad TS, Lee A, Lichtenhan JD, Feher FJ, Mather PT, Hsiao BS. New insight into the structure–property relationships of hybrid (inorganic/organic) POSS™ thermoplastics. Mater Res Soc Symp Proc. 2000;628:CC4.6–7.Google Scholar
  12. 12.
    Blanski RL, Phillips SH, Chaffee K, Lichtenhan JD, Lee A, Geng HP. The synthesis of hybrid materials by the blending of polyhedral oligosilsesquioxanes into organic polymers. Mater Res Soc Symp Proc. 2000;628:CC6.2.Google Scholar
  13. 13.
    Lee A, Lichtenhan JD. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules. 1998;31:4970–4.CrossRefGoogle Scholar
  14. 14.
    Wang XT, Yang YK, Yang ZF, Zhou XP, Liao YG, Lv CC, Chang FC, Xie XL. Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim. 2010;102:739–44.CrossRefGoogle Scholar
  15. 15.
    Haddad TS, Lichtenhan JD. Hybrid organic–inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules. 1996;29:7302–4.CrossRefGoogle Scholar
  16. 16.
    Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Ismail MK, Burmeister M. Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS–siloxane copolymers. Chem Mater. 1996;8:1250–9.CrossRefGoogle Scholar
  17. 17.
    Xu HY, Kuo SW, Lee JY, Chang FC. Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer. 2002;43:5117–24.CrossRefGoogle Scholar
  18. 18.
    Pellice SA, Fasce DP, Williams RJJ. Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. J Polym Sci, Part B. 2003;41:1451–61.CrossRefGoogle Scholar
  19. 19.
    Philips SH, Gonzalez RI, Chaffee KP, Haddad TS, Hoflund GB, Hsiao BS, Fu BX. Remarkable AO resistance of POSS inorganic/organic polymers. SAMPE J. 2000;45:1921–32.Google Scholar
  20. 20.
    Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP. Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer. 2003;44:4491–9.CrossRefGoogle Scholar
  21. 21.
    Fu BX, Namani M, Lee A. Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer. 2003;44:7739–47.CrossRefGoogle Scholar
  22. 22.
    Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nan particles. J Therm Anal Calorim. 2012;107:1083–91.CrossRefGoogle Scholar
  23. 23.
    Blanco I, Abate L, Bottino FA, Bottino P. Hepta isobutyl polyhedral oligomeric silsesquioxanes (hib-POSS): a thermal degradation study. J Therm Anal Calorim. 2012;108:807–15.CrossRefGoogle Scholar
  24. 24.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440:36–42.CrossRefGoogle Scholar
  25. 25.
    Wu Q, Zhang C, Liang R, Wang B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J. Therm Anal Cal. 2010;100:1009–15.CrossRefGoogle Scholar
  26. 26.
    Lin P-H, Khare R. Glass transition and structural properties of glycidyloxypropyl-heptaphenyl polyhedral oligomeric silsesquioxane-epoxy nanocomposites. J Therm Anal Cal. 2010;102:461–7.CrossRefGoogle Scholar
  27. 27.
    Blanco I, Abate L, Bottino FA, Bottino P. Thermal degradation of hepta cyclopentyl, mono phenyl–Polyhedral oligomeric silsesquioxane (hcp-POSS)/Polystyrene (PS) nanocomposites. Polym Degrad Stab. 2012;97:849–55.CrossRefGoogle Scholar
  28. 28.
    Blanco I, Abate L, Antonelli ML, Bottino FA, Bottino P. Polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites: the influence of substituents in the phenyl group on the thermal stability. Express Polym Lett. 2012;6:997–1006.CrossRefGoogle Scholar
  29. 29.
    Blanco I, Bottino FA, Bottino P. Influence of symmetry/asymmetry of the nanoparticles structure on the thermal stability of polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2012;33:1903–10.CrossRefGoogle Scholar
  30. 30.
    Blanco I, Bottino FA. Effect of the substituents on the thermal stability of hepta cyclopentyl, phenyl substitued-polyhedral oligomeric silsesquioxane (hcp–POSS)/polystyrene (PS) nanocomposites. AIP Conf Proc. 2012;1459:247–9.CrossRefGoogle Scholar
  31. 31.
    Blanco I, Bottino FA. Thermal study on phenyl, hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2013;34:225–32.CrossRefGoogle Scholar
  32. 32.
    Blanco I, Abate L, Bottino FA. Variously substituted phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites: the influence of substituents on the thermal stability. J Therm Anal Calorim. 2013;112:421–8.CrossRefGoogle Scholar
  33. 33.
    Blanco I, Bottino FA, Cicala G, Latteri A, Recca A. Synthesis and characterization of differently substituted phenyl hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2013; doi:  10.1002/pc.22644.
  34. 34.
    Shea KJ, Loy DA. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater. 2001;13:3306–19.CrossRefGoogle Scholar
  35. 35.
    Jian KH, Qun CZ, Shu LG. Bridged polyhedral oligomeric silsesquioxane (POSS): a potential member of silsesquioxanes. Chin Chem Lett. 2012;23:181–4.CrossRefGoogle Scholar
  36. 36.
    Lee J, Cho HJ, Jung BJ, Cho NS, Shim HK. Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. Macromolecules. 2004;37:8523–9.CrossRefGoogle Scholar
  37. 37.
    Su X, Guang S, Xu H, Liu X, Li S, Wang X, Deng Y, Wang P. Controllable preparation and optical limiting properties of POSS-based functional hybrid nanocomposites with different molecular architectures. Macromolecules. 2009;42:8969–76.CrossRefGoogle Scholar
  38. 38.
    Araki H, Naka K. Syntheses of dumbbell-shaped trifluoropropyl-substituted POSS derivatives linked by simple aliphatic chains and their optical transparent thermoplastic films. Macromolecules. 2011;44:6039–45.CrossRefGoogle Scholar
  39. 39.
    Hunks WJ, Ozin GA. Periodic mesoporous phenylenesilicas with ether or sulfide hinge groups—a new class of PMOs with ligand channels. Chem Comm. 2004;21:2426–7.CrossRefGoogle Scholar
  40. 40.
    Lichtenhan JD, Schwab JJ, Reinerth W, Carr MJ, An YZ, Feher FJ (2001) Process for the formation of polyhedral oligomeric silsesquioxanes. US Patent WO 01/10871 A1.Google Scholar
  41. 41.
    Abate L, Badea E, Blanco I, Della Gatta G. Heat capacities and enthalpies of solid–solid transitions and fusion of a series of eleven primary Alkylamides by differential scanning calorimetry. J Chem Eng Data. 2008;53:959–65.CrossRefGoogle Scholar
  42. 42.
    Abate L, Blanco I, Cicala G, La Spina R, Restuccia CL. Thermal and rheological behaviour of some random aromatic polyethersulfone/polyetherethersulfone copolymers. Polym Degrad Stab. 2006;91:924–30.CrossRefGoogle Scholar
  43. 43.
    Abate L, Asarisi V, Blanco I, Cicala G, Recca G. The influence of sulfonation degree on the thermal behaviour of sulfonated poly(arylene ethersulfone)s. Polym Degrad Stab. 2010;95:1568–74.CrossRefGoogle Scholar
  44. 44.
    Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.CrossRefGoogle Scholar
  45. 45.
    Lichtenhan JD, Schwab JJ, An YZ, Liu Q, Haddad TS (2003) Process for the functionalization of polyhedral oligomeric silsesquioxanes. US Patent US 2003/0055193 A1 2003.Google Scholar
  46. 46.
    Abate L, Blanco I, Cicala G, Recca A, Restuccia CL. Thermal and rheological behaviours of some random aromatic amino-ended polyethersulfone/polyetherethersulfone copolymers. Polym Degrad Stab. 2006;91:3230–6.CrossRefGoogle Scholar
  47. 47.
    Blanco I, Cicala G, Oliveri L, Recca A. Effects of novel reactive toughening agent on thermal stability of epoxy resin. J Therm Anal Calorim. 2012;108:685–93.CrossRefGoogle Scholar
  48. 48.
    Abate L, Blanco I, Cicala G, Recca A, Scamporrino A. The influence of chain-ends on the thermal and rheological properties of some 40/60 PES/PEES copolymers. Polym Eng Sci. 2009;49:1477–83.CrossRefGoogle Scholar
  49. 49.
    Abate L, Blanco I, Motta O, Pollicino A, Recca A. The isothermal degradation of some polyetherketones: a comparative kinetic study between long-term and short-term experiments. Polym Degrad Stab. 2002;75:465–71.CrossRefGoogle Scholar
  50. 50.
    Abate L, Blanco I, Orestano A, Pollicino A, Recca A. Kinetics of the isothermal degradation of model polymers containing ether, ketone and sulfone groups. Polym Degrad Stab. 2005;87:271–8.CrossRefGoogle Scholar
  51. 51.
    Chartoff RP. Thermoplastic polymers. In: Turi A, editor. Thermal characterization of polymeric materials, Vol. 1. 2nd ed. San Diego: Academic Press; 1997. p. 688–93.Google Scholar
  52. 52.
    Abate L, Blanco I, Pappalardo A, Pollicino A. A kinetic study of the thermal and oxidative degradations of a new poly(arylene)ether copolymer. J Therm Anal Calorim. 2001;65:373–80.CrossRefGoogle Scholar
  53. 53.
    Vecchio S, Luciano G, Franceschi E. Explorative kinetic study on the thermal degradation of five wood species for applications in the archaeological field. Ann Chim. 2006;96:715–25.CrossRefGoogle Scholar
  54. 54.
    Materazzi S, Vecchio S. Recent applications of evolved gas analysis by infrared spectroscopy (IR-EGA). Appl Spectrosc Rev. 2013;48:654–89.CrossRefGoogle Scholar
  55. 55.
    Orita H, Kondoh H, Nozoye H. Decomposition of saturated hydrocarbons adsorbed on Ni(755): comparison of decomposition starting temperatures among cyclic and straight-chain hydrocarbons. J Phys Chem (B). 2000;104:8692–703.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Ignazio Blanco
    • 1
  • Lorenzo Abate
    • 1
  • Francesco A. Bottino
    • 1
  1. 1.Department of Industrial EngineeringUniversity of CataniaCataniaItaly

Personalised recommendations