Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1583–1591 | Cite as

Low-temperature reduction of silver(I) oxide particles with long chain alcohol

  • Yusuke Yasuda
  • Toshiaki Morita
  • Hitoshi Kawaji


The mechanism of reducing silver(I) oxide particles to silver metals was studied using myristyl alcohol as a reducing agent. The reduction temperature of silver oxide with myristyl alcohol decreased to 150 °C from the temperature of silver oxide in air, 400 °C. The reduction temperature was decreased by myristyl alcohol reacting with silver oxide, which was confirmed by our reaction equation model obtained by gas chromatography determination, pyrolysis gas chromatography–mass spectrometry, and Karl Fischer titration. An endothermic of 153.7 kJ mol−1 in the reduction of silver oxide with myristyl alcohol calculated from the reaction model using Hess’s law was coincident with that obtained experimentally by differential scanning calorimetry measurements.


Silver oxide Reduction Bonding Long chain alcohol Differential scanning calorimetry (DSC) Thermodynamic calculations 


  1. 1.
    Neudeck PG, Okojie RS, Chen Y. High-temperature electronics—a role for wide bandgap semiconductors. Proc IEEE. 2002;90:1065–76.CrossRefGoogle Scholar
  2. 2.
    Cooper JA, Agarwal A. SiC power-switching devices-the second electronics revolution? Proc IEEE. 2002;90:956–68.CrossRefGoogle Scholar
  3. 3.
    Bai JG, Lu GQ. Thermomechanical reliability of low-temperature sintered silver die-attached SiC power device assembly. IEEE Trans Device Mater Reliab. 2006;6:436–41.CrossRefGoogle Scholar
  4. 4.
    Morita T, Ide E, Yasuda Y, Hirose A, Kobayashi KF. Study of bonding technology using silver nanoparticles. Jpn J Appl Phys. 2008;47:6615–22.CrossRefGoogle Scholar
  5. 5.
    Ide E, Angata S, Hirose A, Kobayashi KF. Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 2005;53:2385–93.CrossRefGoogle Scholar
  6. 6.
    Yasuda Y, Ide E, Morita T. Low-temperature bonding using silver nanoparticles stabilized by short-chain alkylamines. Jpn J Appl Phys. 2009;48:125004.CrossRefGoogle Scholar
  7. 7.
    Tobita M, Yasuda Y, Ide E, Ushio J, Morita T. Optimal design of coating material for nanoparticles and its application for low-temperature interconnection. J Nanopart Res. 2010;12:2135–44.CrossRefGoogle Scholar
  8. 8.
    Murray AJ, Jaroenapibal P, Koene B, Evoy S. Sintering of silver nanoparticles for the formation of high temperature interconnect joints. Mater Res Soc Symp Proc. 2006;942:39–44.CrossRefGoogle Scholar
  9. 9.
    Moon SK, Dong H, Maric R, Pothukuchi S, Hunt A, Li Y, Wong CP. Conductivity enhancement of nano silver-filled conductive adhesives by particle surface functionalization. J Electron Mater. 2005;34:1432–9.CrossRefGoogle Scholar
  10. 10.
    Takagi M. Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn. 1954;9:359–63.CrossRefGoogle Scholar
  11. 11.
    Buffat P, Borel JP. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13:2287–98.CrossRefGoogle Scholar
  12. 12.
    Morita T, Yasuda Y, Ide E, Hirose A. Bonding technique using micro-scaled silver-oxide particles for in situ formation of silver nanoparticles. Mater Trans. 2008;49:2875–80.CrossRefGoogle Scholar
  13. 13.
    Yasuda Y, Ide E, Morita T. Low-temperature bonding of silver derived from silver oxide particles to nickel. Mater Trans. 2013;54:1063–5.CrossRefGoogle Scholar
  14. 14.
    Nakamori I, Nakamura H, Hayano T, Kagawa S. The thermal decomposition and reduction of silver (I) oxide. Bull Chem Soc Jpn. 1974;47:1827–32.CrossRefGoogle Scholar
  15. 15.
    Waterhouse GIN, Bowmaker GA, Metson JB. The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and Raman spectroscopic study. Phys Chem Chem Phys. 2001;3:3838–45.CrossRefGoogle Scholar
  16. 16.
    Suzuki RO, Ogawa T, Ono K. Use of ozone to prepare silver oxides. J Am Ceram Soc. 1999;82:2033–8.CrossRefGoogle Scholar
  17. 17.
    Weaver JF, Horflund GB. Surface characterization study of the thermal decomposition of Ag2O. Chem Mater. 1994;6:1693–9.CrossRefGoogle Scholar
  18. 18.
    Jelic D, Penavin-Skundric J, Majstorovic D, Mentus S. The thermogravimetric study of silver(I) oxide reduction by hydrogen. Thermochim Acta. 2011;526:252–6.CrossRefGoogle Scholar
  19. 19.
    Herring C. Effect of change of scale on sintering phenomena. J Appl Phys. 1950;21:301–3.CrossRefGoogle Scholar
  20. 20.
    Darwent BD. Bond dissociation energies in simple molecules. National Standard Reference Data Series, NSRDS-NBS 31: the Superintendent of Documents, US. Government Printing Ollice; 1970.Google Scholar
  21. 21.
    Dean JA. Lange’s handbook of chemistry. 15th ed. New York: McGraw-Hill Professional; 1998.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Yusuke Yasuda
    • 1
  • Toshiaki Morita
    • 1
  • Hitoshi Kawaji
    • 2
  1. 1.Hitachi Research LaboratoryHitachi, Ltd.Hitachi-shiJapan
  2. 2.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations