Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1143–1151 | Cite as

Structure and thermal stability of PMMA/MMT nanocomposites as denture base material

  • Xiang Wang
  • Qiang Su
  • Yumei Hu
  • Chuanzeng Wang
  • Junping Zheng


Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by three different intercalating agents: methacrylatoethyl trimethyl ammonium chloride (DMC), dodecylamine (12CNH), and hexadecyl allyl ammonium chloride (HADC). The structures of the nanocomposites were investigated by X-ray diffraction and transmission electron microscopy, while the interaction between PMMA and MMT was characterized by Fourier transform infrared spectroscopy. The molecular mass of the extracted PMMA was measured by gel permeation chromatography. The thermal stability of PMMA/MMT nanocomposites was evaluated by thermogravimetric and differential scanning calorimetry. The results indicated that PMMA/MMT nanocomposites were successfully prepared and the interaction between PMMA and MMT of PMMA/MMT–HADC nanocomposites was the strongest. The thermal stability of the nanocomposites was improved and found to be optimal for PMMA/MMT–HADC with T 10 increasing to 304 °C, 52 °C higher than that of neat PMMA.


PMMA Nanocomposite Suspension polymerization Thermal stability 



This investigation was supported by Program for New Century Excellent Talents in University, People’s Republic of China.


  1. 1.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J Polym Sci A. 1993;31:983–6.CrossRefGoogle Scholar
  2. 2.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP. New polymer electrolyte nanocomposites: melt intercalation of poly(ethyleneoxide) in mica-type silicates. Adv Mater. 1995;7:154–6.CrossRefGoogle Scholar
  3. 3.
    Nistor MT, Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2013;111:1903–19.CrossRefGoogle Scholar
  4. 4.
    Kawasumi M, Hasegawa N, Kato M, Okada A. Preparation and mechanical properties of polypropylene–clay hybrids. Macromolecules. 1997;30:6333–8.CrossRefGoogle Scholar
  5. 5.
    Padidar D, Agrawal S, Saxena NS. Glass transition activation energy of CdS/PMMA nano-composite and its dependence on composition of CdS nano-particles. J Therm Anal Calorim. 2011;106:921–5.CrossRefGoogle Scholar
  6. 6.
    Lomonaco D, Maia FJN, Mazzetto SE. Thermal evaluation of cashew nutshell liquid as new bioadditives for poly(methyl methacrylate). J Therm Anal Calorim. 2013;111:619–26.CrossRefGoogle Scholar
  7. 7.
    Arshad M, Masud K, Arif M, Rehman S, Arif M, Zaidi JH, Chohan ZH, Saeed A, Qureshi AH. The effect of AlBr3 additive on the thermal degradation of PMMA: a study using TG–DTA–DTG, IR and PY–GC–MS techniques. J Therm Anal Calorim. 2009;96:873–81.CrossRefGoogle Scholar
  8. 8.
    Nemec JW, Bauer W. Acrylic and methacrylic acid polymers. In: Mark HF, Kroschwitz JI, editors. Encyclopedia of polymer science and engineering. New York: Wiley; 1985. p. 201–234.Google Scholar
  9. 9.
    Andrade CKZ, Matos RAF, Oliveira VB, Duraes JA, Sales MJA. Thermal study and evaluation of new menthol-based ionic liquids as polymeric additives. J Therm Anal Calorim. 2010;99:539–43.CrossRefGoogle Scholar
  10. 10.
    Thangamani R, Chinnaswamy TV, Palanichamy S, Bojja S, Charles AW. Thermal degradation studies on PMMA–HET acid based oligoesters blends. J Therm Anal Calorim. 2010;100:651–60.CrossRefGoogle Scholar
  11. 11.
    Shen Z, Simon GP, Cheng Y. Nanocomposites of poly(methylmethacrylate) and organically modified layered silicates by melt intercalation. J Appl Polym Sci. 2004;92:2101–15.CrossRefGoogle Scholar
  12. 12.
    Chen GH, Chen XQ, Lin ZY, Ye W, Yao KD. Preparation and properties of PMMA/clay nanocomposite. J Mater Sci Lett. 1999;18:1761–3.CrossRefGoogle Scholar
  13. 13.
    Lee DC, Jang LW. Preparation and characterization of PMMA–clay hybrid composite by emulsion polymerization. J Appl Polym Sci. 1996;61:1117–22.CrossRefGoogle Scholar
  14. 14.
    Salahuddin N, Shehata M. Polymethylmethacrylate–montmorillonite composites: preparation, characterization and properties. Polymer. 2001;42:8379–85.CrossRefGoogle Scholar
  15. 15.
    Moursi AM, Winnard AV, Winnard PL, Lannutti JJ, Seghi RR. Enhanced osteoblast response to a polymethylmethacrylate–hydroxyapatite composite. Biomaterials. 2002;23:133–44.CrossRefGoogle Scholar
  16. 16.
    Langer K, Marburger C, Berthold A, Kreuter J, Stieneker F. Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery part I: preparation and physicochemical characterization. Int J Pharm. 1996;137:67–74.CrossRefGoogle Scholar
  17. 17.
    Huang XY, Brittain WJ. Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules. 2001;34:3255–60.CrossRefGoogle Scholar
  18. 18.
    Kim SS, Park TS, Shin BC, Kim YB. Polymethyl methacrylate/montmorillonite nanocomposite beads through a suspension polymerization-derived process. J Appl Polym Sci. 2005;97:2340–9.CrossRefGoogle Scholar
  19. 19.
    Mohammad A, Laleh S, Azizollah N, Seyed MM, Shahin K, Khatereh A, Samal B. PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater. 2009;25:339–47.CrossRefGoogle Scholar
  20. 20.
    Discacciati JAC, Oréfice RL. Structural analysis on photopolymerized dental resins containing nanocomponents. J Mater Sci. 2007;42:3883–93.CrossRefGoogle Scholar
  21. 21.
    Zheng JP, Su Q, Wang C, Cheng G, Zhu R, Shi J, Yao KD. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material. J Mater Sci Mater Med. 2011;22:1063–71.CrossRefGoogle Scholar
  22. 22.
    Qu XW, Guan TH, Liu GD, She QY, Zhang LC. Preparation, structural characterization, and properties of poly(methyl methacrylate)/montmorillonite nanocomposites by bulk polymerization. J Appl Polym Sci. 2005;97:348–57.CrossRefGoogle Scholar
  23. 23.
    Huskić M, Žigon M. PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur Polym J. 2007;43:4891–7.CrossRefGoogle Scholar
  24. 24.
    Çelik M, Önal M, Sarιkaya Y. Poly(methyl acrylate)/Na–montmorillonite intercalated composites: preparation and characterization. J Appl Polym Sci. 2012;123:3662–7.CrossRefGoogle Scholar
  25. 25.
    Nikolaidis AK, Achilias DS, Karayannidis GP. Synthesis and characterization of PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. Ind Eng Chem Res. 2011;50:571–9.CrossRefGoogle Scholar
  26. 26.
    Khatana S, Dhibar AK, Ray SS, Khatua BB. Use of pristine clay platelets as a suspension stabilizer for the synthesis of poly(methyl methacrylate)/clay nanocomposites. Macromol Chem Phys. 2009;210:1104–13.CrossRefGoogle Scholar
  27. 27.
    Wang LJ, Su SP, Chen D, Wilkie CA. Fire retardancy of bis[2-(methacryloyloxy)ethyl] phosphate modified poly(methyl methacrylate) nanocomposites containing layered double hydroxide and montmorillonite. Polym Degrad Stab. 2009;94:1110–8.Google Scholar
  28. 28.
    Tsai TY, Wen CK, Chuang HJ, Lin MJ, Ray U. Effect of clay with different cation exchange capacity on the morphology and properties of poly(methyl methacrylate)/clay nanocomposites. Polym Compos. 2009;30:1552–61.CrossRefGoogle Scholar
  29. 29.
    Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta. 2007;453:75–96.CrossRefGoogle Scholar
  30. 30.
    Li SM, Yuan H, Yu T, Yuan WZ, Ren J. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym Adv Technol. 2009;20:1114–20.CrossRefGoogle Scholar
  31. 31.
    Hristodor CM, Vrinceanu N, Pode R, Copcia VE, Botezatu E, Popovici E. Preparation and thermal stability of Al2O3–clay and Fe2O3–clay nanocomposites, with potential application as remediation of radioactive effluents. J Therm Anal Calorim. 2013;111:1227–34.CrossRefGoogle Scholar
  32. 32.
    Shen L, Lin YJ, Du QG, Zhong W. Studies on structure–property relationship of polyamide-6/attapulgite nanocomposites. Compos Sci Technol. 2006;66:2242–8.CrossRefGoogle Scholar
  33. 33.
    Pradhan DK, Choudhary RNP, Samantaray BK. Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes. Express Polym Lett. 2008;2:630–8.CrossRefGoogle Scholar
  34. 34.
    Zheng JP, Li P, Ma YL, Yao KD. Gelatin/montmorillonite hybrid nanocomposite. I. Preparation and properties. J Appl Polym Sci. 2002;86:1189–94.CrossRefGoogle Scholar
  35. 35.
    Zhang WA, Luo W, Fang YE. Synthesis and properties of a novel hydrogel nanocomposites. Mater Lett. 2005;59:2876–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Xiang Wang
    • 1
  • Qiang Su
    • 1
  • Yumei Hu
    • 1
  • Chuanzeng Wang
    • 1
  • Junping Zheng
    • 1
  1. 1.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations