Journal of Thermal Analysis and Calorimetry

, Volume 116, Issue 1, pp 99–105 | Cite as

The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems

  • Natassa Pippa
  • Konstantinos Gardikis
  • Stergios Pispas
  • Costas Demetzos


The aim of this work is to study the morphological characteristics via fractal analysis and the alterations of the thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) liposomes, caused by the incorporation of cholesterol, poly(amidoamine) (PAMAM) dendrimer, and MPOx (poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline)) gradient block copolymer (9:1 molar ratio). A gamut of light scattering techniques and differential scanning calorimetry were used in order to extract information on the morphological (in different dispersion media) and thermodynamic characteristics of liposomal drug nanocarriers, respectively. The vesicles’ structure of liposomes has a different thermodynamic content, which corresponds to a different thermotropic behavior, in comparison to pure lipid bilayers. The observed metastable phase only for DPPC liposomes has been considered as a “physical impurity”, which leads to “physical incompatibility” and consequently promotes the aggregation of DPPC liposomes in aqueous media. The incorporation of biomaterials such as PAMAM G4 and MPOx, caused alterations in the thermotropic behavior of DPPC liposomes affecting only the main transition specific enthalpy ΔH. All the other calorimetric parameters remained unaltered. These findings supported the hypothesis that the exceptional stability and transition cooperativity of the chimeric liposomal membrane might be due to the reduction of the vesicle size with the smaller membrane curvature that is indicated by the fractal dimensionality of the system. In conclusion, the results from the thermal analysis of the liposomal systems were in line with the picture of their structural characteristics, as indicated by the interplay between physicochemical and thermodynamical parameters, which determines their fractal morphology.


Chimeric liposomes Fractal dimension Colloidal stability DSC Drug delivery systems 



The authors would like to thank prof. Dimitrios Fessas for his valuable comments and discussions.


  1. 1.
    Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.CrossRefGoogle Scholar
  2. 2.
    Gregoriadis G, Wills EJ, Swain CP, Tavill AS. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet. 1974;1:1313–6.CrossRefGoogle Scholar
  3. 3.
    Gardikis K, Tsimplouli C, Dimas K, Micha-Skretta M, Demetzos C. New chimeric advanced drug delivery nanosystems (Chi-aDDnSs) as doxorubicin carriers. Int J Pharm. 2010;402:231–7.CrossRefGoogle Scholar
  4. 4.
    Gardikis K, Hatziantoniou S, Signorelli M, Pusceddu M, Micha-Scretta M, Schiraldi A, Demetzos C, Fessas D. Thermodynamics and structural characterization of liposomal locked-in dendrimers as drug carriers. Colloids Surf B. 2010;81:11–9.CrossRefGoogle Scholar
  5. 5.
    Gardikis K, Hatziantoniou S, Bucos M, Fessas D, Signorelli M, Felekis T, Zervou M, Screttas C, Steele B, Ionov M, Scretta M, Klajnert B, Bryszewska M, Demetzos C. New drug delivery nanosystem combining liposomal and dendrimeric technology (liposomal locked-in dendrimers) for cancer therapy. J Pharm Sci. 2010;99:3561–71.CrossRefGoogle Scholar
  6. 6.
    Gardikis K, Fessas D, Signorelli M, Dimas K, Tsimplouli C, Ionov M, Demetzos C. A new chimeric drug delivery nano system (Chi-aDDnS) composed of PAMAM G 3.5 dendrimer and liposomes as doxorubicin’s carrier. In vitro pharmacological studies. J Nanosci Nanotechnol. 2011;5:3764–72.CrossRefGoogle Scholar
  7. 7.
    Pippa N, Kaditi E, Pispas S, Demetzos C. PEO-b-PCL/DPPC chimeric nanocarriers: self-assembly aspects in aqueous and biological media and drug incorporation. Soft Matter. 2013;9:4073–82.CrossRefGoogle Scholar
  8. 8.
    Pippa N, Merkouraki M, Pispas S, Demetzos C. DPPC:MPOx chimeric advanced drug delivery nanosystems (Chi-aDDnSs): physicochemical and structural characterization, stability and drug release studies. Int J Pharm. 2013;450:1–10.CrossRefGoogle Scholar
  9. 9.
    Pippa N, Kaditi E, Pispas S, Demetzos C. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers. J Nanopart Res. 2013;15:1685.CrossRefGoogle Scholar
  10. 10.
    Pippa N, Psarommati F, Pispas S, Demetzos C. The shape/morphology balance: a study of stealth liposomes via fractal analysis and drug encapsulation. Pharm Res. 2013;30:2385–95.CrossRefGoogle Scholar
  11. 11.
    Rowland M, Noe CR, Smith DA, Tucker GT, Crommelin DJ, Peck CC, Rocci ML Jr, Basançon L, Shah VP. Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. J Pharm Sci. 2012;101:4075–99.CrossRefGoogle Scholar
  12. 12.
    Crommelin DJ, Florence AT. Towards more effective advanced drug delivery systems. Int J Pharm. 2013;454:496–511.CrossRefGoogle Scholar
  13. 13.
    Canelas DA, Herlihy KP, DeSimone JM. Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:393–404.CrossRefGoogle Scholar
  14. 14.
    Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121:3–9.CrossRefGoogle Scholar
  15. 15.
    Pippa N, Pispas S, Demetzos C. The fractal hologram and elucidation of the structure of liposomal carriers in aqueous and biological media. Int J Pharm. 2012;430:65–73.CrossRefGoogle Scholar
  16. 16.
    Pippa N, Pispas S, Demetzos C. The delineation of the morphology of charged liposomal vectors via a fractal analysis in aqueous and biological media: physicochemical and self-assembly studies. Int J Pharm. 2012;437:264–74.CrossRefGoogle Scholar
  17. 17.
    Garidel P, Johann C, Blume A. Thermodynamics of lipid organization and domain formation in phospholipid bilayer. J Liposome Res. 2000;10:131–58.CrossRefGoogle Scholar
  18. 18.
    Ozawa T. Thermal analysis: review and prospect. Thermochim Acta. 2000;355:35–42.CrossRefGoogle Scholar
  19. 19.
    Heerklotz H. The microfluidity of lipid membranes. J Phys Condens Matter. 2004;16:R441–67.CrossRefGoogle Scholar
  20. 20.
    Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18:159–73.CrossRefGoogle Scholar
  21. 21.
    Thompson KC. Pharmaceutical applications of calorimetric measurements in the new millennium. Thermochim Acta. 2000;355:83–7.CrossRefGoogle Scholar
  22. 22.
    Chen ML. Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv Drug Deliv Rev. 2008;60:768–77.CrossRefGoogle Scholar
  23. 23.
    Milonaki Y, Kaditi E, Pispas S, Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: self-organization in aqueous media and drug encapsulation. J Polym Sci A Polym Chem. 2012;50(2011):1226.CrossRefGoogle Scholar
  24. 24.
    Sabín J, Prieto G, Ruso JM, Sarmiento F. Fractal aggregates induced by liposome–liposome interaction in the presence of Ca2+. Eur Phys J E. 2007;24:201–10.CrossRefGoogle Scholar
  25. 25.
    Sabín J, Prieto G, Ruso JM, Messina PV, Sarmiento F. Aggregation of liposomes in presence of La3+: a study of the fractal dimension. Phys Rev E. 2007;76:011408.CrossRefGoogle Scholar
  26. 26.
    Grogan MJ, Rotkina L, Bau HH. In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E. 2011;83:061405.CrossRefGoogle Scholar
  27. 27.
    Okhi S, Ohshima H. Interaction and aggregation of lipid vesicles (DLVO theory versus modified DLVO theory). Colloids Surf B. 1999;14:27–45.CrossRefGoogle Scholar
  28. 28.
    Okhi S, Arnold K. A mechanism for ion-induced lipid fusion. Colloids Surf B. 2000;18:83–97.CrossRefGoogle Scholar
  29. 29.
    Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998;1376:91–145.CrossRefGoogle Scholar
  30. 30.
    Matsingou C, Demetzos C. Calorimetric study on the induction of interdigitated phase in hydrated DPPC bilayers by bioactive labdanes and correlation to their liposome stability: the role of chemical structure. Chem Phys Lipids. 2007;145:45–62.CrossRefGoogle Scholar
  31. 31.
    Ivanova VP, Heimburg T. Histogram method to obtain heat capacities in lipid monolayers, curved bilayers, and membranes containing peptides. Phys Rev E. 2001;63:041914.CrossRefGoogle Scholar
  32. 32.
    Pippa N, Hatziantoniou S, Mourelatou EA, Amaro-Luis JM, Villalobos-Osorio D, Demetzos C. Preparation and thermal behavior of liposomal nanoparticles incorporating bioactive labdane epimers. Adv Sci Lett. 2012;16:336–41.CrossRefGoogle Scholar
  33. 33.
    Jesús C, Socorro F, Rodriguez de Rivera M. Development of a calorimetric sensor for medical application. J Therm Anal Calorim. 2013;113:1003–7.CrossRefGoogle Scholar
  34. 34.
    Ikeda H, Sano Y, Matsubara T, Kawahara M, Yukawa M, Fujisawa M, Yukawa E, Aki H. Drug–tea polyphenol interaction. J Therm Anal Calorim. 2013;113:1135–8.CrossRefGoogle Scholar
  35. 35.
    Santos LB, Ribeiro CA, Capela JMV, Crespi MS, Pimentel MAS, De Julio M. Kinetic parameters for thermal decomposition of hydrazine. J Therm Anal Calorim. 2013;113:1209–16.CrossRefGoogle Scholar
  36. 36.
    Yonemochi E, Sano S, Yoshihashi Y, Terada K. Diffusivity of amorphous drug in solid dispersion. J Therm Anal Calorim. 2013;113:1505–10.CrossRefGoogle Scholar
  37. 37.
    Yoshihashi Y, Sato M, Kawano Y, Yonemochi E, Terada K. Evaluation of physicochemical properties on the blending process of pharmaceutical granules with magnesium stearate by thermal effusivity sensor. J Therm Anal Calorim. 2013;113:1281–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Natassa Pippa
    • 1
    • 2
  • Konstantinos Gardikis
    • 1
    • 3
  • Stergios Pispas
    • 2
  • Costas Demetzos
    • 1
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of AthensAthensGreece
  2. 2.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece
  3. 3.R&D DepartmentAPIVITA SAAthensGreece

Personalised recommendations