Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1679–1691 | Cite as

Thermal decomposition kinetics, flammability, and mechanical property study of wood polymer nanocomposite

  • Ankita Hazarika
  • Tarun Kumar Maji
Article

Abstract

Melamine formaldehyde-furfuryl alcohol copolymer was impregnated into softwood in combination with 1,3-dimethylol-4,5-dihydroxy ethyleneurea, a crosslinking agent, nanoclay, and a renewable polymer, collected as gum from a local plant (Moringa oleifera) under vacuum condition and polymerized by catalyst heat treatment. Fourier-transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy were used to characterize the nanocomposites. Transmission electron microscopy showed uniform distribution of nanoclay in the composites. The mechanical properties were improved after the addition of plant polymer. The plant polymer had a marked influence on the flammability and thermal stability of the prepared composites. The apparent activation energy was determined by Ozawa-Flynn-Wall’s and Vyazovkin methods. The activation energy of the composites decreased up to a certain decomposed fraction thereafter it remained constant. Higher the plant polymer content higher was the activation energy of the prepared composites which indicated a better interfacial adhesion and thermal stability.

Keywords

Nanocomposites Plant polymer Flammability Thermal stability Activation energy 

Notes

Acknowledgements

University grant commission (UGC) is acknowledged for financial support in the form of institutional fellowship to one of the authors (AH).

References

  1. 1.
    Devi RR, Ali I, Maji TK. Chemical modification of rubber wood with styrene in combination with a crosslinker: effect on dimensional stability and strength property. Bioresour Technol. 2003;88:185–8.CrossRefGoogle Scholar
  2. 2.
    Kim JW, Carlborn K, Matuana LM, Heiden PA. Thermoplastic modification of urea–formaldehyde wood adhesives to improve moisture resistance. J Appl Polym Sci. 2006;101:4222–9.CrossRefGoogle Scholar
  3. 3.
    Baysal E, Kiyoka S, Mustafa O, Yalinkilic K. Dimensional stabilization of wood treated with furfuryl alcohol catalysed by borates. Wood Sci Technol. 2004;38:405–15.Google Scholar
  4. 4.
    Mantanis GI, Young RA, Rowell RM. Swelling of wood: part I Swelling in water. Wood Sci Technol. 1994;28:119–34.CrossRefGoogle Scholar
  5. 5.
    Mantanis GI, Young RA, Rowell RM. Swelling of wood: part II Swelling in organic liquids. Holzforschung. 1994;48:480–90.CrossRefGoogle Scholar
  6. 6.
    Lande S, Westin M, Schneider M. Properties of Furfurylated Wood. Scand J For Res. 2004;19:22–30.CrossRefGoogle Scholar
  7. 7.
    Schneider MH. New cell wall and cell lumen wood polymer composites. Wood Sci Technol. 1995;29:135–58.CrossRefGoogle Scholar
  8. 8.
    Esteves B, Nunes L, Pereira H. Properties of furfurylated wood (Pinus pinaster). Eur J Wood Prod. 2011;69:521–5.CrossRefGoogle Scholar
  9. 9.
    Gindl W, Zargar-Yaghubi F, Wimmer R. Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresour Technol. 2003;87:325–30.CrossRefGoogle Scholar
  10. 10.
    Watanabe M, Sakurai M, Maeda M. Preparation of ammonium polyphosphate and its application to Flame retardant. Phosphorus Res Bull. 2009;23:35–44.CrossRefGoogle Scholar
  11. 11.
    Baysal E. Determination of oxygen index levels and thermal analysis of scots pine (pinus sylvestris l.) impregnated with melamine formaldehyde-boron combinations. J Fire Sci. 2002;20:373–89.CrossRefGoogle Scholar
  12. 12.
    Jana T, Roy BC, Maiti S. Biodegradable film Modification of the biodegradable film for fire retardancy. Polym Degrad Stab. 2000;69:79–82.CrossRefGoogle Scholar
  13. 13.
    Ghosh SN, Maiti S. Adhesive performance, flammability Evaluation and biodegradation study of Plant polymer blends. Eur Polym J. 1998;34:849–54.CrossRefGoogle Scholar
  14. 14.
    Arora S, Kumar M, Kumar M. Catalytic effect of bases in impregnation of guanidine nitrate on Poplar (Populus) wood Flammability and multiple heating rate kinetic study. J Therm Anal Calorim. 2012;107:1277–86.CrossRefGoogle Scholar
  15. 15.
    Ak M, Cilgi GK, Kuru FD, Cetisli H. Thermal decomposition kinetics of polypyrrole and its star shaped copolymer. J Therm Anal Calorim. 2013;111:1627–32.CrossRefGoogle Scholar
  16. 16.
    Zhou Q, Xanthos M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab. 2009;94:327–38.CrossRefGoogle Scholar
  17. 17.
    Zhao L, Cao Z, Fang Z, Guo Z. Influence of fullerene on the kinetics of thermal and thermo-oxidative degradation of high-density polyethylene by capturing free radicals. J Therm Anal Calorim. 2013;. doi: 10.1007/s10973-013-3158-4.Google Scholar
  18. 18.
    Vyazovkin S. Evaluation of activation energy of thermally stimulated solidstate reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S, Sbirrazzuoli N. Estimating the activation energy for Non-isothermal crystallization of Polymer melts. J Therm Anal Calorim. 2003;72:681–6.CrossRefGoogle Scholar
  21. 21.
    Hazarika A, Maji TK. Effect of different crosslinkers on properties of melamine formaldehyde-furfuryl alcohol copolymer/montmorillonite impregnated softwood (ficus hispida). Polym Eng Sci. 2012;. doi: 10.1002/pen.23391.Google Scholar
  22. 22.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A. 1966;70A:487–523.CrossRefGoogle Scholar
  23. 23.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  24. 24.
    Xie Y, Xiao Z, Grüneberg T, Militz H, Hill CAS, Steuernagel L, Mai C. Effects of chemical modification of wood particles with glutaraldehyde and 1,3-dimethylol-4,5-dihydroxyethyleneurea on properties of the resulting polypropylene composites. Compos Sci Technol. 2010;70:2003–11.CrossRefGoogle Scholar
  25. 25.
    Devi RR, Maji TK. Chemical modification of simul wood with styrene–acrylonitrile copolymer and organically modified nanoclay. Wood Sci Technol. 2012;46:299–315.CrossRefGoogle Scholar
  26. 26.
    Lori JA, Myina OM, Ekanem EJ, Lawal AO. Structural and adsorption characteristics of carbon adsorbent synthesized from polyfurfuryl alcohol with kaolinite template. Res J Appl Sci Eng Technol. 2011;3:440–6.Google Scholar
  27. 27.
    Jang TR, Sheu TC, Sheu JJ, Chen CC. Crosslinking of Cotton Fabrics Premercerized with Different Alkalis, Part III: crosslinking and Physical Properties of DMDHEU-Treated Fabrics. Text Res J. 1993;63:679–86.CrossRefGoogle Scholar
  28. 28.
    Deka BK, Maji TK. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Compos Sci Technol. 2010;70:1755–61.CrossRefGoogle Scholar
  29. 29.
    Lu WH, Zhao GJ, Xue ZH. Preparation and characterization of wood/montmorillonite Nanocomposites. For Stud China. 2006;8:35–40.CrossRefGoogle Scholar
  30. 30.
    Devi RR, Maji TK. Preparation and characterization of wood/styrene-acrylonitrile co-polymer/MMT nanocomposite. J Appl Polym Sci. 2011;122:2099–109.CrossRefGoogle Scholar
  31. 31.
    Cai X, Riedl B, Zhang SY, Wan H. The impact of the nature of nanofillers on the performance of wood polymer nanocomposites. Compos Part A. 2008;39:727–37.CrossRefGoogle Scholar
  32. 32.
    Gilman JW, Jackson CL, Morgan AB, Harris RH, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips S. Flammability properties of polymer-layered-silicate nanocomposites: polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12:1866–73.CrossRefGoogle Scholar
  33. 33.
    Qin H, Zhang S, Zhao C, Feng M, Yang M, Shu Z. Thermal stability and flammability of polypropylene/montmorillonite composites. Polym Degrad Stab. 2004;85:807–13.CrossRefGoogle Scholar
  34. 34.
    Fung KL, Li RKY, Tjong SC. Interface modification on the properties of sisal fiber-reinforced polypropylene composites. J Appl Polym Sci. 2002;85:169–76.CrossRefGoogle Scholar
  35. 35.
    Doh GH, Lee SY, Kang IA, Kong YT. Thermal behavior of liquefied wood polymer composites (LWPC). Compos Struct. 2005;68:103–8.CrossRefGoogle Scholar
  36. 36.
    Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.CrossRefGoogle Scholar
  37. 37.
    Kim HS, Yang HS, Kim HJ, Park HJ. Thermogravimetric analysis of rice husk Flour filled thermoplastic polymer Composites. J Therm Anal Calorim. 2004;76:395–404.CrossRefGoogle Scholar
  38. 38.
    Hsiue GH, Wei HF, Shiao SJ, Kuo WJ, Sha YA. Chemical modification of dicyclopentadiene-based epoxy resins to improve compatibility and thermal properties. Polym Degrad Stab. 2001;73:309–18.CrossRefGoogle Scholar
  39. 39.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional method to explore the mechanism and kinetics of multi-step epoxy cures. Macromol Rapid Commun. 1999;20:387–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Department of Chemical SciencesTezpur UniversityTezpurIndia

Personalised recommendations