Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1029–1035 | Cite as

Coating of polyamide 12 by sol–gel methodology

  • Beatriz M. de Campos
  • Paulo S. Calefi
  • Katia J. Ciuffi
  • Emerson H. de Faria
  • Lucas A. Rocha
  • Eduardo J. Nassar
  • Jorge V. L. Silva
  • Marcelo F. Oliveira
  • Izaque A. Maia


The combination of sol–gel methodology with rapid prototyping (RP) produces functionalized 3D structures with potential applications in various fields. However, this combination has been little explored. In this paper, we used the sol–gel method to deposit vanadium isopropoxide onto polyamide (PA12) constructed by RP and pretreated with acetic acid, to obtain a functionalized substrate with new thermal, physical, and chemical properties. Vanadium isopropoxide (one, five, or ten layers) was deposited onto the PA12 piece by dip-coating. We characterized the coated PA12 by thermal analyses, X-ray diffraction, and infrared spectroscopy, which revealed that V=O and Si–O–Si groups exist on the PA12 surface. PA12 coating with vanadium isopropoxide enhanced the decomposition temperature. Differential scanning calorimetry revealed increased fusion and decomposition enthalpy as a function of the PA12 coating. Therefore, deposition of vanadium isopropoxide onto PA12 pretreated with acetic acid improves the thermal stability of PA12 prepared by RP.


Rapid prototyping Sol–gel Vanadium alkoxide Thermal analysis 



The authors acknowledge CNPq and CAPES (Brazilian research funding agencies) for support of this work. B.M. de C. (Grant 2008/09695-3) and E.J.N. (Grant 2012/11673-3) acknowledge grants from the São Paulo Research Foundation (FAPESP).

Supplementary material

10973_2013_3384_MOESM1_ESM.pdf (160 kb)
Supplementary material 1 (PDF 159 kb)


  1. 1.
    Matos MG, Calefi PS, Ciuffi KJ, Nassar EJ. Synthesis and luminescent properties of gadolinium aluminates phosphors. Inorg Chim Acta. 2011;375:63–9.CrossRefGoogle Scholar
  2. 2.
    Ricci GP, Rocha ZN, Nakagaki S, Castro KADF, Crotti AEM, Calefi PS, Nassar EJ, Ciuffi KJ. Iron-alumina materials prepared by the non-hydrolytic sol-gel route: synthesis, characterization and application in hydrocarbons oxidation using hydrogen peroxide as oxidant. Appl Catal A. 2010;389:147–54.CrossRefGoogle Scholar
  3. 3.
    Marçal AL, De Faria EH, Saltarelli M, Calefi PS, Nassar EJ, Ciuffi KJ, Trujillano R, Vicente MA, Korili SA, Gil A. Amine-functionalized titanosilicates prepared by the sol-gel process as adsorbents of the Azo-Dye orange II. Ind Eng Chem Res. 2011;50:239–46.CrossRefGoogle Scholar
  4. 4.
    Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L. Chimie douce: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C R Chim. 2010;13:3–39.CrossRefGoogle Scholar
  5. 5.
    Arcos D, Vallet-Regí M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6(8):2874–88.CrossRefGoogle Scholar
  6. 6.
    Gvishi R. Fast sol–gel technology: from fabrication to applications. J Sol-Gel Sci Technol. 2009;50:241–53.CrossRefGoogle Scholar
  7. 7.
    Wright JD, Sommerdijk NAJM. Sol-gel materials: chemistry and application, vol. 4. London: Taylor & Francis; 2001.Google Scholar
  8. 8.
    Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel Processing. San Diego: Academic Press; 1990.Google Scholar
  9. 9.
    Aegerter MA, Menning M. Sol–gel technologies for glass producers and users. first ed. Berlin: Kluwer Academic Publishers; 2004.CrossRefGoogle Scholar
  10. 10.
    Hench LL. Sol–Gel Silica. NJ: Noyes Publications; 1998.Google Scholar
  11. 11.
    Mark JE, Lee CYC, Bianconi PA. Hybrid organic-inorganic composites. Washington DC: American Chemical Society; 1995.CrossRefGoogle Scholar
  12. 12.
    Hench LL, West JK. Chem Rev. 1990;90:33–72.CrossRefGoogle Scholar
  13. 13.
    Ravaro LP, Scalvi LVA. Influence of pH of colloidal suspension on the electrical conductivity of SnO2 thin films deposited via Sol-Gel-Dip-Coating. Mat Res. 2011;14:113–7.CrossRefGoogle Scholar
  14. 14.
    Martins RF, Serra OA. Thin film of ZnAl2O4:Eu3+ synthesized by a non-alkoxide precursor sol-gel method. J Braz Chem Soc. 2010;21:1395–8.CrossRefGoogle Scholar
  15. 15.
    Belleville P. Functional coatings: the sol–gel approach. C R Chim. 2010;13:97–105.CrossRefGoogle Scholar
  16. 16.
    Gaponenko NV. Synthesis and optical properties of films formed by the sol–gel method in mesoporous matrices. J Appl Spectrosc. 2002;69:1–20.CrossRefGoogle Scholar
  17. 17.
    Kudrawiec R, Misiewicz J, Bryja L, Molchan IS, Gaponenko NV. Photoluminescence investigation of porous anodic alumina with spin-on europium-containing titania sol–gel films. J Alloys Compd. 2002;341:211–3.CrossRefGoogle Scholar
  18. 18.
    Mohallem NDS, Seara LM, Novak MA, Sinnecker EHCP. Magnetic nanocomposite thin films prepared by sol–gel process. Braz J Phys. 2006;36:1078–80.CrossRefGoogle Scholar
  19. 19.
    Nassar EJ, Ciuffi KJ, Gonçalves RR, Messaddeq Y, Ribeiro SJL. Filmes de titânio-silício preparados por “spin’’ e “dip-coating’’. Quím. Nova. 2003;26:674–7.CrossRefGoogle Scholar
  20. 20.
    Maia LJQ, Fick J, Bouchard C, Mastelaro VR, Hernandes AC, Ibanez A. Elaboration and optimization of (Y, Er)Al3(BO3)4 glassy planar waveguides through the sol–gel process. Opt Mater. 2010;32:484–90.CrossRefGoogle Scholar
  21. 21.
    Volpato N, editor. Prototipagem Rápida—Tecnologias e Aplicações. São Paulo: Edgar Blucher; 2007.Google Scholar
  22. 22.
    Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping original research article. CIRP Annals—Manufacturing Technology. 1998;47:525–40.CrossRefGoogle Scholar
  23. 23.
    Bandeira LC, De Campos BM, De Faria EH, Ciuffi KJ, Calefi PS, Nassar EJ, Silva JVL, Oliveira M, Maia IA. TG/DTG/DTA/DSC As a tool for studying deposition by the sol–gel process on materials obtained by rapid prototyping. J Therm Anal Calorim. 2009;97:67–70.CrossRefGoogle Scholar
  24. 24.
    De Campos BM, Bandeira LC, Calefi PS, Ciuffi KJ, Nassar EJ, Silva JVL, Oliveira M, Maia IA. Protective coating materials on rapid prototyping by sol-gel. Virtual Phys Prototy. 2011;6:33–9.CrossRefGoogle Scholar
  25. 25.
    Nassar EJ, Bandeira LC, De Campos BM, Calefi PS, Ciuffi KJ, Silva JVL, Oliveira M, Maia IA. Coating on organic polymer with macroporous structure prepared by rapid prototyping. J Nanostructured Polym Nanocomposites. 2011;7:47–51.Google Scholar
  26. 26.
    Rosario Pignatello, Nassar EJ, Ciuffi KJ, Calefi PS, Rocha LA, De Faria EH, Silva MLA, Luz PP, Bandeira LC, Cestari A, Fernandes CN. Biomaterials and sol-gel process: a methodology for the preparation of functional materials. Biomaterials science and engineering. 2011. p. 1–28.CrossRefGoogle Scholar
  27. 27.
    Bandeira LC, Ciuffi KJ, Calefi PS, Nassar EJ, Salvado IMM, Fernandes MHFV. Low temperature synthesis of bioactive materials. Cerâmica. 2011;57:166–72.CrossRefGoogle Scholar
  28. 28.
    Bandeira LC, Ciuffi KJ, Calefi PS, Nassar EJ, Silva JVL, Oliveira M, Maia IA, Salvador IM, Fernandes MHV. Effect of a calcium phosphate coating on polyamide substrate for biomaterial applications. J Braz Chem Soc. 2012;23:810–7.CrossRefGoogle Scholar
  29. 29.
    Czégény Zs, Jakab E, Blazsó M, Bhaskar T, Sakata Y. Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: formation of chlorinated and brominated organic compounds. J Anal Appl Pyrol. 2012;96:69–77.CrossRefGoogle Scholar
  30. 30.
    Karsli NG, Yilmaz T, Aytac A, Ozkoc G. Investigation of erosive wear behavior and physical properties of SGF and/or calcite reinforced ABS/PA6 composites. Compos B. 2013;44:385–93.CrossRefGoogle Scholar
  31. 31.
    Wang J, Cai X-F. Kinetics study of thermal oxidative degradation of ABS containing flame retardant components. J Therm Anal Calorim. 2012;107:725–32.CrossRefGoogle Scholar
  32. 32.
    Yang XF, Li QL, Chen ZP, Zhang L, Zhou Y. Mechanism studies of thermolysis process in copolyamide 66 containing triaryl phosphine oxide. J Therm Anal Calorim. 2013;112:567–71.CrossRefGoogle Scholar
  33. 33.
    Gornicka B, Gorecki L. TGA/DTG/DSC investigation of thermal ageing effects on polyamide–imide enamel. J Therm Anal Calorim. 2010;101:647–50.CrossRefGoogle Scholar
  34. 34.
    Kim SS, Shin MW, Jang H. Tribological properties of short glass fiber reinforced polyamide 12 sliding on medium carbon steel. Wear. 2012;274–275:34–42.CrossRefGoogle Scholar
  35. 35.
    Zydowicz N, Chaumont P, Soto-Portas ML. Formation of aqueous core polyamide microcapsules obtained via interfacial polycondensation: optimization of the membrane formation through pH control. J Membrane Sci. 2001;189:41–58.CrossRefGoogle Scholar
  36. 36.
    Adame D, Beall GW. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci. 2009;42:545–52.CrossRefGoogle Scholar
  37. 37.
    Illers K-H. Glass transition and cold crystallization in even and odd co-amino-acid polyamides. Polymer. 1977;18:551–3.CrossRefGoogle Scholar
  38. 38.
    Yu HH. Vibrational spectroscopic study of the thermal transition behavior in polyamide 11. Mater Sci Eng. 1998;A254:53–62.Google Scholar
  39. 39.
    McNally T, Murphy WR, Lew CY, Turner RJ, Brennan GP. Polyamide-12 layered silicate nanocomposites by melt blending. Polymer. 2003;44:2761–72.CrossRefGoogle Scholar
  40. 40.
    Luyt AS, Krupta I, Assumption HJ, Ahmad EEM, Mofokeng JP. Blends of polyamide 12 and maleic anhydride grafted paraffin wax as potential phase change materials. Polym Testing. 2010;29:100–6.CrossRefGoogle Scholar
  41. 41.
    Jose S, Thomas PS, Thomas S, Karger-Kocsis J. Thermal and crystallisation behaviours of blends of polyamide 12 with styrene-ethylene/butylene-styrene rubbers. Polymer. 2006;47:6328–36.CrossRefGoogle Scholar
  42. 42.
    Liang J, Xu Y, Wei Z, Song P, Chen G, Zhang W. Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites. J Therm Anal Calorim. 2013;. doi: 10.1007/s10973-013-3184-2.Google Scholar
  43. 43.
    Ryba J, Ujhelyiová A, Kristofic M, Vassová I. Thermal properties of PA 6 and PA 6 modified with copolyamides and layered silicates. J Therm Anal Calorim. 2010;101:1027–37.CrossRefGoogle Scholar
  44. 44.
    Gupta MC, Pandey RR. g- Irradiation of Nylon 6. J. Polym. Sci. 1998;26:491–502.CrossRefGoogle Scholar
  45. 45.
    Eriksson PA, Boydell P, Eriksson K, Manson JAE, Albertsson AC. Effect of Thermal-Oxidative Aging on Mechanical, Chemical, and Thermal Properties of Recycled Polyamide 66. J Appl Polym Sci. 1997;65:1619–30.CrossRefGoogle Scholar
  46. 46.
    Zhihui Y, Yajie Z, Xiaomin Z, Jinghua Y. Effects of the compatibilizer PP-g-GMA on morphology and mechanical properties of PP/PC blends. Polymer. 1998;39:547–51.CrossRefGoogle Scholar
  47. 47.
    Xie S, Zhang S, Liu H, Chen G, Feng M, Qin H, Wang F, Yang M. Effects of processing history and annealing on polymorphic structure of nylon-6/montmorillonite nanocomposites. Polymer. 2005;46:5417–27.CrossRefGoogle Scholar
  48. 48.
    Evora MC, Gonçalez OL, Dutra RCL, Diniz MF, Wiebeck H, De Andrade e Silva LG. Comparação de Técnicas FTIR de Transmissão, Reflexão e Fotoacústica na Análise de Poliamida-6, Reciclada e Irradiada. Polímeros. 2002;12:60–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Beatriz M. de Campos
    • 1
  • Paulo S. Calefi
    • 1
  • Katia J. Ciuffi
    • 1
  • Emerson H. de Faria
    • 1
  • Lucas A. Rocha
    • 1
  • Eduardo J. Nassar
    • 1
  • Jorge V. L. Silva
    • 2
  • Marcelo F. Oliveira
    • 2
  • Izaque A. Maia
    • 2
  1. 1.Universidade de FrancaFrancaBrazil
  2. 2.Centro de Tecnologia da Informação Renato ArcherCampinasBrazil

Personalised recommendations