Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 2, pp 1901–1905 | Cite as

Thermal decomposition of tetraethyl ammonium tetrafluoroborate

A simultaneous TG–DTG–DSC–quadrupole mass spectrometric approach


Thermal decomposition of tetraethyl ammonium tetrafluoroborate has been studied employing simultaneous techniques of TG–DTG–DSC—quadrupole mass spectrometric techniques in an inert atmosphere of pure Helium gas at a sample heating rate of 5 K min−1 employing a platinum crucible. The observed decomposition paths are the most commonly expected Hofmann elimination and substitution reactions paths.


Decomposition Tetraethyl Ammonium Tetrafluoroborate Thermal 



Dr. M. R. R. Prasad would like to express his sincere thanks to M/s. Netzsch-Geratebau Germany for extending their instrumental facility support in carrying out this research work. He also would like to express his sincere thanks to Dr. B. Sreedhar, Principal Scientist, IICT, Hyderabad in extending his valuable support by participating in the technical discussion on this subject.


  1. 1.
    Flanigen EM. A comprehensive review article concerning both high- silica zeolites and silica molecular sieves. Proceedings of international conference on Zeolites, 5th, Heyden, London; 1980. p. 760–780.Google Scholar
  2. 2.
    Kerr GT. Zeolite ZK-5: a new molecular sieve. Science. 1963;140:1412.CrossRefGoogle Scholar
  3. 3.
    Acara NA. Aluminosilicates of zeolite n structure. US Patent 3,414,602; 1968.Google Scholar
  4. 4.
    Rubin MK, Rosinski, EJ, Plank CJ. Crystalline zeolite ZSM-34 and method of preparing the same. US Patent 4,086,186; 1978.Google Scholar
  5. 5.
    See EG. Gmelin Handbook, 8th Edn. Boron compounds. 2nd Supplement. 1982;2:53–6.Google Scholar
  6. 6.
    Sergey S, Pauls JR, Nunes SP, Peinemann KV. Quaternary ammonium membrane materials for CO2 separation. J Membr Sci. 2010;359:44–53.CrossRefGoogle Scholar
  7. 7.
    Krásensky S, Studnicková M. Electro synthesis of organic amalgam from tetraethyl ammonium tetrafluoroborate in aqueous medium. Collect Czech Chem Commune. 1994;59:2375–82.CrossRefGoogle Scholar
  8. 8.
    Prasad MRR, Krishnan K, Ninan KN, Krishnamurthy VN. Thermal decomposition of tetraalkyl ammonium tetrafluoroborates. Thermochim Acta. 1997;297:207–10.CrossRefGoogle Scholar
  9. 9.
    Yanes EG, Gratz SR, Stalcup AM. Tetraethyl ammonium tetrafluoroborate: a novel electrolyte with a unique role in the capillary electrophoretic separation of polyphenols found in grape seed extracts. Analyst. 2000;125:1919–23.CrossRefGoogle Scholar
  10. 10.
    Pieniazek PA, Stangret J. Hydration of TEATFB in aqueous solutions by means of FTIR spectroscopy. Vib Spectrosc. 2005;39:81–7.CrossRefGoogle Scholar
  11. 11.
    Kurzweil P, Chwisteka M. Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sour. 2008;176:555–67.CrossRefGoogle Scholar
  12. 12.
    Giuseppetti G, Tadini C, Ferloni P, Zabinska G, Torre S. The crystal structure of tetraethyl ammonium tetrafluoroborate (C2H5)4NBF4. Z Kristallogr. 1994;209:509–11.CrossRefGoogle Scholar
  13. 13.
    Subramaniam K. A review of electrosynthesis of polysilanes. J Macromol Sci-Rev Macromol Chem Phys. 1998;C38:637–50.CrossRefGoogle Scholar
  14. 14.
    Vijayanathan V, Venkatachalam S, Krishnamurthy VN. Effect of supporting electrolytes and cathode materials on the electropolymerization of acrylonitrile with methacrylic acid. Eur Polym J. 1993;29:1373–7.CrossRefGoogle Scholar
  15. 15.
    Marcus Y. Tetraalkylammonium ions in aqueous and non-aqueous solutions. J Solut Chem. 2008;37:1071–98.CrossRefGoogle Scholar
  16. 16.
    Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y. Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 2010;10:1409–11.CrossRefGoogle Scholar
  17. 17.
    Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol. 2011;6(8):496–500. doi: 10.1038/NNANO.2011.110.CrossRefGoogle Scholar
  18. 18.
    Chunhong L, Peter W, Constantina L. Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors. Thesis submitted in Division of Mechanical, Medical and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2, 7XH, UK; 2011.Google Scholar
  19. 19.
    Brandon EJ, Smart MC, West WC. Low temperature double-layer capacitors. US Patent No. 8081418 (B2/20/2011); 2011.Google Scholar
  20. 20.
    Yue B, Wang C, Wagner P, Yang Y, Ding X, Officer DL, Wallace GG. Electrodeposition of pyrrole and 3-(4-tertbutylphenyl)thiophene copolymer for supercapacitor applications. Synth Met. 2012;162:2216–21.CrossRefGoogle Scholar
  21. 21.
    Wang H, Pilon L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitance. Electrochim Acta. 2012;64:130–9.CrossRefGoogle Scholar
  22. 22.
    Kim B, Chung H, Kim W. High-performance super capacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology. 2012;23:155401–1554409.CrossRefGoogle Scholar
  23. 23.
    Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012;1:107–13.CrossRefGoogle Scholar
  24. 24.
    Gu W, Peters N, Yushin G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Carbon. 2013;53:292–301.CrossRefGoogle Scholar
  25. 25.
    Zhang L, Cndelaria SL, Tian J, Li Y, Huang YX, Cao G. Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density. J Power Sour. 2013;236:215–23.CrossRefGoogle Scholar
  26. 26.
    Tyunina EY, Chekunova MD, Afanasiev VN. Electrochemical characteristics of propylene carbonate solutions of tetraethylammonium tetrafluoroborate. Russ J Electrochem. 2013;49:453–7.CrossRefGoogle Scholar
  27. 27.
    Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P. Ulrahigh-power micrometer-sized supercapacitors based on onion-like carbon. Nat Nanotechnol. 2010;5:651–4.CrossRefGoogle Scholar
  28. 28.
    Torop J, Arulepp M, Leis J, Punning A, Johanson U, Palmre V, Aabloo A. Nanoporous carbide-derived carbon material-based linear actuators. Materials. 2010;3:9–25.CrossRefGoogle Scholar
  29. 29.
    Udupa MR. Thermal decomposition of tetraethyl ammonium per chlorate. Propellants Explos Pyrotech. 1982;7:155–7.CrossRefGoogle Scholar
  30. 30.
    Haskins NJ, Mitchell R. Thermal degradation of some benzyltrialkylammonium salts using pyrolysis-gas chromatography-mass spectrometry. Analyst. 1991;116:901–3.CrossRefGoogle Scholar
  31. 31.
    Ollis WD, Rey M, Sutherland IO. Base catalyzed rearrangements involving ylide intermediates. Part 15. The mechanism of the Stevens [1, 2] rearrangement. J Chem Soc Perkin Trans. 1983;1:1009–27.CrossRefGoogle Scholar
  32. 32.
    Morrison RT, Boyd RN. Organic chemistry. 4th ed. London: Allyn and Bacon; 1983. p. 30.Google Scholar
  33. 33.
    Zabinska G, Ferloni P, Sanesi M. On the thermal behavior of some tetraalkyl ammonium tetrafluoroborates. Thermochim Acta. 1987;122:87–94.CrossRefGoogle Scholar
  34. 34.
    Schultz TM. Ph. D. thesis, two and three dimensional systems studied using x-ray crystallographic techniques, Chap. 3, Aarhus University, Denmark; 1998.Google Scholar
  35. 35.
    Wheeler CM Jr, Sandstedt RA. Reaction of dimethyl ether-boron trifluoride with quaternary alkyl ammonium halides. J Am Chem Soc. 1955;77:2024–5.CrossRefGoogle Scholar
  36. 36.
    Kobler H, Munz R, Gasser AG, Simchen G. A simple synthesis of functional anions with tetraalkylammonium. Liebigs Ann Chem. 1978; 1937–1945.Google Scholar
  37. 37.
    Gordon JE. Fused organic salts. III. Chemical stability of molten tetra-n-alkylammonium salts. Medium effects on thermal R4N+X decomposition. RBr+I = RI+Br equilibrium constant in fused salt medium. J Org Chem. 1965;30:2760–3.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Department of ChemistrySri Krishnadevaraya UniversityAnantapurIndia
  2. 2.SecunderabadIndia

Personalised recommendations