Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 1, pp 523–526 | Cite as

Magnetocaloric effect in La1.25Sr0.75MnCoO6

  • Mahmoud A. Hamad
Article

Abstract

The magnetocaloric properties of La1.25Sr0.75MnCoO6 (LSCM) manganites that were synthesized at 750 and 1,300 °C have been investigated. It is found that magnetic entropy change distribution of the LSCM is much more uniform than that of gadolinium. This feature is desirable for an Ericson-cycle magnetic refrigerator. It is suggested that LSCM can be used in an active magnetic regenerative nitrogen liquefier to cool nitrogen gas from room temperature to 77 K.

Keywords

Magnetocaloric effect Model Magnetization Magnetic entropy change Heat capacity change Relative cooling power 

References

  1. 1.
    Oliveira NA, Ranke PJ. Theoretical aspects of the magnetocaloric effect. Phys Rep. 2010;489:89–159.CrossRefGoogle Scholar
  2. 2.
    Hamad MA. Theoretical work on magnetocaloric effect in La0.75Ca0.25MnO3. J Adv Ceram. 2012;1:290–5.CrossRefGoogle Scholar
  3. 3.
    Hamad MA. Theoretical work on magnetocaloric effect in ceramic and sol–gel La0.67Ca0.33MnO3. J Therm Anal Calorim. 2013;111:1251–4.CrossRefGoogle Scholar
  4. 4.
    Hamad MA. Magnetocaloric effect in (001)-oriented MnAs thin film. J Supercond Nov Magn. 2013. doi: 10.1007/s10948-013-2254-9.
  5. 5.
    Hamad MA. Magnetocaloric effect in La1−xCdxMnO3. J Supercond Nov Magn. 2013. doi: 10.1007/s10948-013-2189-1.
  6. 6.
    Hamad MA. Magnetocaloric effect in Ge0.95Mn0.05 films. J Supercond Nov Magn. 2013;26:449–53.CrossRefGoogle Scholar
  7. 7.
    Hamad MA. Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 thin film. J Comput Electron. 2012;11:344–8.CrossRefGoogle Scholar
  8. 8.
    Hamad MA. Magnetocaloric effect of perovskite manganites Ce0.67Sr0.33MnO3. J Supercond Nov Magn. 2013. doi: 10.1007/s10948-013-2124-5.
  9. 9.
    Hamad MA. Magnetocaloric effect in La0.65-xEuxSr0.35MnO3. Phase Transit. 2013. doi: 10.1080/01411594.2013.828056.
  10. 10.
    Hamad MA. Giant electrocaloric effect of highly (100)-oriented 0.68PbMg1/3Nb2/3O3–0.32PbTiO3 thin film. Philos Mag Lett. 2013;93:346–55.CrossRefGoogle Scholar
  11. 11.
    Hamad MA. Magnetocaloric properties of La0.6Ca0.4MnO3. J Therm Anal Calorim. 2012. doi: 10.1007/s10973-012-2723-6.
  12. 12.
    Hamad MA. Detecting giant electrocaloric properties of ferroelectric SbSI at room temperature. J Adv Dielect. 2013. doi: 10.1142/S2010135X13500082.
  13. 13.
    Hamad MA. Theoretical investigations on electrocaloric properties of PbZr0.95Ti0.05O3 Thin Film. Int J Thermophys. 2013. doi: 10.1007/s10765-013-1457-4.
  14. 14.
    Hamad MA. Room temperature giant electrocaloric properties of relaxor ferroelectric 0.93PMN–0.07PT thin film. AIP Adv. 2013;3:032115.CrossRefGoogle Scholar
  15. 15.
    Hamad MA. Magnetocaloric effect of perovskite Eu0.5Sr0.5CoO3. J Supercond Nov Magn. 2013. doi: 10.1007/s10948-013-2270-9.
  16. 16.
    Ghosh B, Kar S, Brar LK, Raychaudhuri AK. Electronic transport in nanostructured films of La0.67Sr0.33MnO3. J Appl Phys. 2005;98:094302.CrossRefGoogle Scholar
  17. 17.
    Mukhopadhyay S, Das I. Giant enhancement of room-temperature magnetoresistance in La0.67Sr0.33MnO3/Nd0.67Sr0.33MnO3 multilayers. Appl Phys Lett. 2006;88:032506.CrossRefGoogle Scholar
  18. 18.
    Hamad MA. Prediction of energy loss of Ni0.58Zn0.42Fe2O4 nanocrystalline and Fe3O4 nanowire arrays. Jpn J Appl Phys. 2010;49:085004.CrossRefGoogle Scholar
  19. 19.
    Hamad MA. Calculations on nanocrystalline CoFe2O4 prepared by polymeric precursor method. J Supercond Nov Magn. 2013;26:669–73.CrossRefGoogle Scholar
  20. 20.
    Hamad MA. Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transition. 2012;85:106–12.CrossRefGoogle Scholar
  21. 21.
    Hamad MA. Simulation of magnetocaloric effect in La0.7Ca0.3MnO3 ceramics fabricated by fast sintering process. J Supercond Nov Magn. 2013. doi: 10.1007/s10948-013-2260-y.
  22. 22.
    Hamad MA. Magnetocaloric effect in nanopowders of Pr0.67Ca0.33FexMn1−xO3. J Supercond Nov Magn. doi: 10.1007/s10948-013-2244-y.
  23. 23.
    Bazuev GV, Korolyov AV, Melkozyorova MA, Chupakhina TI. Magnetic phases in lanthanum–strontium manganite–cobaltite La1.25Sr0.75MnCoO6. J Magn Magn Mater. 2010;322:494–9.CrossRefGoogle Scholar
  24. 24.
    Goodenough JB. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys Rev. 1955;100:564.CrossRefGoogle Scholar
  25. 25.
    Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B. 1998;57:3478.CrossRefGoogle Scholar
  26. 26.
    Pecharsky VK, Gschneidner KA. Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater. 1999;200:44–56.CrossRefGoogle Scholar
  27. 27.
    Bohigas X, Tejada J, Barco E, Zhang XX, Sales M. Tunable magnetocaloric effect in ceramic perovskites. Appl Phys Lett. 1998;73:390.CrossRefGoogle Scholar
  28. 28.
    Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D. Large magnetic entropy change in perovskite-type manganese oxides. Phys Rev Lett. 1997;78:1142.CrossRefGoogle Scholar
  29. 29.
    Radaelli PG, Cox DE, Marezio M, Cheong SW, Schiffer PE, Ramirez AP. Simultaneous structural, magnetic, and electronic transitions in La1−xCaxMnO3 with x = 0.25 and 0.50. Phys Rev Lett. 1995;75:4488.CrossRefGoogle Scholar
  30. 30.
    Kim KH, Gu JY, Choi HS, Park GW, Noh TW. Frequency shifts of the internal phonon modes in La0.7Ca0.3MnO3. Phys Rev Lett. 1996;77:1877.CrossRefGoogle Scholar
  31. 31.
    Tang T, Gu KM, Cao QQ, Wang DH, Zhang SY, Du YW. Magnetocaloric properties of Ag-substituted perovskite-type manganites. J Magn Magn Mater. 2000;222:110–4.CrossRefGoogle Scholar
  32. 32.
    Phan MH, Tian SB, Yu SC, Ulyanov AN. Magnetic and magnetocaloric properties of La0.7Ca0.3−xBaxMnO3 compounds. J Magn Magn Mater. 2003;256:306–10.CrossRefGoogle Scholar
  33. 33.
    Sun Y, Tong W, Zhang YH. Large magnetic entropy change above 300 K in La0.67Sr0.33Mn0.9Cr0.1O3. J Magn Magn Mater. 2001;232:205–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Physics Department, College of ScienceAl Jouf UniversitySkakaSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations