Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 1, pp 267–274 | Cite as

On non-isothermal kinetics of two Cu-based bulk metallic glasses

  • Jili Wu
  • Ye Pan
  • Jinhong Pi


In this paper, two Cu-based bulk metallic glasses, Cu55Zr37Ti8 and Cu61Zr34Ti5, have been evaluated in thermodynamics and kinetics. The activation energies with the constant values were generalized by different theoretical models. The E x of Cu55Zr37Ti8 and Cu61Zr34Ti5 are 319 ± 12 and 359 ± 12 kJ mol−1, respectively, implying that the as-cast alloys have a good stability in thermodynamics. On the other hand, variable activation energies were also determined using Kissinger–Akahira–Sunose method, Ozawa–Flynn–Wall method, and Friedman’s method. The results showed that the Ea(x) at the beginning of the crystallization are higher than that at the end of the crystallization in the first exothermic peak. By introducing the local Avrami exponent, n(x), the growth and nucleation mechanisms were discussed. Furthermore, the effects of different activation energies on local Avrami exponent were also given a discussion.


Cu-based bulk metallic glass Non-isothermal kinetics Activation energy Local Avrami exponent 



Thanks for financial support from the National Natural Science Foundation of China (Grant no. 50971041).

Supplementary material

10973_2013_3288_MOESM1_ESM.doc (240 kb)
Supplementary material 1 (DOC 240 kb)


  1. 1.
    Inoue A, Zhang W, Zhang T, Kurosaka K. High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 2001;49(14):2645–52.CrossRefGoogle Scholar
  2. 2.
    Pan Y, Cao HB, Ding L, Zhang CA, Chang YA. Novel bulkier copper-rich ternary metallic glasses from computational thermodynamics. J Non-Cryst Solids. 2010;356(41–42):2168–71.CrossRefGoogle Scholar
  3. 3.
    Qin CL, Zhang W, Asami K, Ohtsu N, Inoue A. Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu-Hf-Ti-Nb alloys. Acta Mater. 2005;53(14):3903–11.CrossRefGoogle Scholar
  4. 4.
    Wang D, Tan H, Li Y. Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—a metallographic way to pinpoint the best glass forming alloys. Acta Mater. 2005;53(10):2969–79.CrossRefGoogle Scholar
  5. 5.
    Cao HB, Pan Y, Ding L, Zhang C, Zhu J, Hsieh KC, Chang YA. Synthesis of copper-rich amorphous alloys by computational thermodynamics. Acta Mater. 2008;56(9):2032–6.CrossRefGoogle Scholar
  6. 6.
    Qin CL, Zhang W, Asami K, Kimura H, Wang XM, Inoue A. A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater. 2006;54(14):3713–9.CrossRefGoogle Scholar
  7. 7.
    Qin CL, Asami K, Zhang T, Zhang W, Inoue A. Corrosion behavior of Cu–Zr–Ti–Nb bulk glassy alloys. Mater Trans. 2003;44(4):749–53.CrossRefGoogle Scholar
  8. 8.
    Qiao JC, Pelletier JM. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). J Non-Cryst Solids. 2011;357(14):2590–4.CrossRefGoogle Scholar
  9. 9.
    Wu J, Pan Y, Pi J, Zhang L. Fabrication of Cu-rich bulk metallic glass composites via solidification method. Paper presented at the the International Union of Materials Research Society—International Conference in Asia-2012 (IUMRS-ICA-2012) Busan, Korea, August 26–31, 2012.Google Scholar
  10. 10.
    Clavaguera-Mora MT, Clavaguera N, Crespo D, Pradell T. Crystallisation kinetics and microstructure development in metallic systems. Prog Mater Sci. 2002;47(6):559–619.CrossRefGoogle Scholar
  11. 11.
    Svoboda R, Málek J. Crystallization kinetics of amorphous Se. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-012-2922-1.Google Scholar
  12. 12.
    Kumar A, Barman PB, Sharma R. Crystallization kinetics of Ag-doped Se–Bi–Te chalcogenide glasses. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-013-3055-x.Google Scholar
  13. 13.
    Holubová J, Černošek Z, Černošková E. A detailed study of isothermal crystallization of As2Se3 undercooled liquid. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-013-3110-7.Google Scholar
  14. 14.
    Heireche MM, Belhadji M, Hakiki NE. Non-isothermal crystallisation kinetics study on Se90−xIn10Sbx (x = 0, 1, 2, 4, 5) chalcogenide glasses. J Therm Anal Calorim. 2013. doi: 10.1007/s10973-012-2873-6.Google Scholar
  15. 15.
    Sestak J, Kratochv J. Rational approach to thermodynamic processes and constitutive equations in isothermal and nonisothermal kinetics. J Therm Anal. 1973;5(2–3):193–201.Google Scholar
  16. 16.
    Patel AT, Pratap A. Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim. 2012;107(1):159–65.CrossRefGoogle Scholar
  17. 17.
    Park SO, Lee JC, Kim YC, Fleury E, Sung DS, Kim DH. Crystallization kinetics of the Cu43Zr43Al7Ag7 amorphous alloy. Mater Sci Eng A. 2007;449:561–4.CrossRefGoogle Scholar
  18. 18.
    Ou X, Zhang GQ, Xu X, Wang LN, Liu JF, Jiang JZ. Crystallization kinetics in Cu35Ag15Zr45Al15 metallic glass. J Alloys Compd. 2007;441(1–2):181–4.CrossRefGoogle Scholar
  19. 19.
    Yang YJ, Xing DW, Shen J, Sun JF, Wei SD, He HJ, McCartney DG. Crystallization kinetics of a bulk amorphous Cu–Ti–Zr–Ni alloy investigated by differential scanning calorimetry. J Alloys Compds. 2006;415(1–2):106–10.CrossRefGoogle Scholar
  20. 20.
    Busch R, Kim YJ, Johnson WL. Thermodynamics and kinetics of the undercooled liquid and the glass-transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J Appl Phys. 1995;77(8):4039–43.CrossRefGoogle Scholar
  21. 21.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  22. 22.
    Xing PF, Zhuang YX, Wang WH, Gerward L, Jiang JZ. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass. J Appl Phys. 2002;91(8):4956–60.CrossRefGoogle Scholar
  23. 23.
    Zhang J, Wei YH, Qiu KQ, Zhang HF, Quan MX, Hu ZQ. Crystallization kinetics and pressure effect on crystallization of Zr55Al10Ni5Cu30 bulk metallic glass. Mater Sci Eng A. 2003;357(1–2):386–91.CrossRefGoogle Scholar
  24. 24.
    Augis JA, Bennett JE. Calculation of Avrami parameters for heterogeneous solid-state reactions using a modification of Kissinger method. J Therm Anal. 1978;13(2):283–92.CrossRefGoogle Scholar
  25. 25.
    Boswell PG. On the calculation of activation-energies using a modified kissinger method. J Therm Anal. 1980;18(2):353–8.CrossRefGoogle Scholar
  26. 26.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.CrossRefGoogle Scholar
  27. 27.
    Kong LH, Gao YL, Song TT, Wang G, Zhai QJ. Non-isothermal crystallization kinetics of FeZrB amorphous alloy. Thermochim Acta. 2011;522(1–2):166–72.CrossRefGoogle Scholar
  28. 28.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  29. 29.
    Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207(4994):290–1.CrossRefGoogle Scholar
  30. 30.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Pol Sym. 1964;6(1):183–95.CrossRefGoogle Scholar
  31. 31.
    Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44(19):5625–34.CrossRefGoogle Scholar
  32. 32.
    Zhuang YX, Duan TF, Shi HY. Calorimetric study of non-isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass. J Alloys Compds. 2011;509(37):9019–25.CrossRefGoogle Scholar
  33. 33.
    Pratap A, Lad KN, Rao TLS, Majmudar P, Saxena NS. Kinetics of crystallization of amorphous Cu50Ti50 alloy. J Non-Cryst Solids. 2004;345:178–81.CrossRefGoogle Scholar
  34. 34.
    Blazquez JS, Conde CF, Conde A. Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater. 2005;53(8):2305–11.CrossRefGoogle Scholar
  35. 35.
    Venkataraman S, Rozhkova E, Eckert J, Schultz L, Sordelet DJ. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: the effect of particulate reinforcement. Intermetallics. 2005;13(8):833–40.CrossRefGoogle Scholar
  36. 36.
    Christian JW. Formal theory of transformation kinetics. The theory of transformations in metals and alloys. Pergamon: Oxford; 2002. p. 529–52.CrossRefGoogle Scholar
  37. 37.
    Doherty RD. Diffusive phase transformations in the solid state. In: Robert WC, Peter H, editors. Physical metallurgy (fourth edition). Oxford: North-Holland; 1996. p. 1363–505.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.School of Material EngineeringNanjing Institute of TechnologyNanjingPeople’s Republic of China

Personalised recommendations