Skip to main content
Log in

Spectroscopic study and thermal behavior of trivalent lanthanides and yttrium(III) chelates of EDTA using TG-DSC, FTIR, and TG-DSC coupled to FTIR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid-state compounds of yttrium and lanthanide chelates of ethylenediaminetetraacetic acid have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), theoretical and experimental infrared spectroscopy (FTIR), elemental analysis, complexometry and TG-DSC coupled to FTIR were used to characterize and to study the thermal decomposition of these compounds. The results provided information about the composition, dehydration, thermal stability, thermal decomposition and identification of gaseous products evolved during the thermal decomposition of these compounds. The theoretical and experimental spectroscopic data suggest the possible modes of coordination of the ligand with the lanthanum and terbium metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moeller T, Moss FAJ, Marshall RH. Observations on the rare earths. LXVI. Some characteristics of ethylenediaminetetraacetic acid chelates of certain rare earth metal ions. J Am Chem Soc. 1955;77:3182–6.

    Article  CAS  Google Scholar 

  2. Kolat RS, Powell JE. The solid rare earth chelates of ethylenediaminetetraacetic acid. Inorg Chem. 1962;1:485–90.

    Article  CAS  Google Scholar 

  3. Charles RG. Thermal properties of some solid neodymium complexes derived from ethylenediaminetetraacetic acid. J Inorg Nucl Chem. 1966;28:407–14.

    Article  CAS  Google Scholar 

  4. Bhat TR, Krishna Iyer R. Studies on EDTA complexes–VIII Thermal behaviour in air and nitrogen atmosphere of some metal-EDTA complexes. J Inorg Nucl Chem. 1967;29:179–85.

    Article  CAS  Google Scholar 

  5. Wendlandt WW. Thermogravimetric and differential thermal analysis of (ethylenedinitrilo)tetraacetic acid. Anal Chem. 1960;32:848–50.

    Article  CAS  Google Scholar 

  6. Wendlandt WW, Horton GR. Differential thermal analysis of some transition metal ethylenediaminetetraacetic acid chelates. Nature. 1960;187:769–70.

    Article  CAS  Google Scholar 

  7. Morris ML, Dunhan RW, Wendlandt WW. The thermal properties of some pentadentate and hexadentate cobalt complexes of ethylenediaminetetraacetic acid and hydroxyethylenediaminetetraacetic acid. J Inorg Nucl Chem. 1961;20:274–82.

    Article  CAS  Google Scholar 

  8. Mercadante A, Ionashiro M, de Oliveira LCS, Ribeiro CA, Moscardini D′Assunção L. Preparation and thermal decomposition of solid-state lanthanide (III) and yttrium (III) chelates of ethylenediaminetetraacetic acid. Thermochim Acta. 1993;216:267–77.

    Article  Google Scholar 

  9. Vikram L, Raju B, Ragul R, Sivasankar BN. Thermal degradation studies on some lanthanide-EDTA complexes containing hydrazinium cation. J Therm Anal Cal. 2008;93:987–91.

    Article  CAS  Google Scholar 

  10. Kumar AS, Indrasenan P. Thermal decomposition studies of lanthanide (III) complexes of EDTA. Asian J Chem. 2008;20:5178–86.

    CAS  Google Scholar 

  11. Flaschka HA. EDTA titrations: an introduction to theory and practice. 2nd ed. Oxford: Pergamon Press; 1964.

    Google Scholar 

  12. Ionashiro M, Graner CAF, Zuanon Netto J. Titulação complexométrica de lantanídeos e ítrio. Ecl Quim. 1983;8:29–32.

    CAS  Google Scholar 

  13. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  14. Lee C, Yang W, Parr RG. Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  15. Treu-Filho O, Pinheiro JC, da Costa EB, Ferreira JEV, de Figueiredo AF, Kondo RT, de Lucca Neto VA, de Souza RA, Legendre AO, Mauro AE. Experimental and theoretical study of the compound [Pd(dmba)(NCO)(imz)]. J Mol Struct. 2007;829:195–201.

    Article  CAS  Google Scholar 

  16. Gigante AC, Gomes DJC, Lima LS, Caires FJ, Treu-Filho O, Ionashiro M. Synthesis, thermal properties and spectroscopic study of solid mandelate of light trivalent lanthanides. Thermochim Acta. 2012;536:6–14.

    Article  CAS  Google Scholar 

  17. Treu-Filho O, Pinheiro JC, Kondo RT, Marques RFC, Paiva-Santos CO, Davolos MR, Jafelicci M Jr. Gaussian basis sets to the theoretical study of the electronic structure of perovskite (LaMnO3). J Mol Struc (Theochem). 2003;631:93–9.

    Article  CAS  Google Scholar 

  18. Treu-Filho O, Pinheiro JC, Kondo RT. Designing Gaussian basis sets to the theoretical study of the piezoelectric effect of perovskite (BaTiO3). J Mol Struct. 2004;671:71–5.

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision A. 02. Wallingford, CT: Gaussian Inc.; 2009.

  20. Goodson DZ, Sarpal SK, Wolfsberg M. Influence on isotope effect calculations of the method of obtaining force constants from vibrational data. J Phys Chem. 1982;86:659–63.

    Article  CAS  Google Scholar 

  21. Schelegel HB. In: Bertran J, editor. New theoretical concepts for understanding organic reactions. The Netherlands: Academic; 1989. p. 33–53.

  22. Dennington R, Keith T, Millam J. GaussView. Version 5. 0. 8. Shawnee Mission, KS: Semichem Inc.; 2000–2008.

Download references

Acknowledgements

The authors thank FAPESP, CNPq and CAPES foundations (Brazil) for financial support. This research was supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP), Instituto de Química de Araraquara, UNESP—Campus de Araraquara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Gigante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gigante, A.C., Caires, F.J., Gomes, D.J.C. et al. Spectroscopic study and thermal behavior of trivalent lanthanides and yttrium(III) chelates of EDTA using TG-DSC, FTIR, and TG-DSC coupled to FTIR. J Therm Anal Calorim 115, 127–135 (2014). https://doi.org/10.1007/s10973-013-3284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3284-z

Keywords

Navigation