Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 3, pp 2137–2144 | Cite as

Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses

  • E. Wers
  • H. Oudadesse
Article

Abstract

Bioactive glasses prepared in SiO2–CaO–Na2O and P2O5 system are used as biomaterials in orthopaedic and maxillofacial surgery. Zn presents high physiological interest. It enhances physiological effects of implanted biomaterials. In this work, the thermal characteristics (T g, T c and T f) of pure bioactive glass elaborated with different amounts of CaO, Na2O in pure glass and with different amounts of introduced Zn in glass (ranging from 0.1 to 10 in mass%), were studied. The excess entropy was calculated for different compounds. Glasses were prepared by the melting process. The thermal behaviour of obtained bioactive glasses was determined using differential thermal analysis. Therefore, the glass transition (T g), the crystallization (T c) and the melting temperatures (T f) were revealed. Moreover, according to Dietzel formula, the thermal stability (TS) of the studied bioactive glasses has been calculated. The first results concerning the impact of different oxides, revealed a decrease of the TS, T g, T c and T f when the SiO2/CaO increases and revealed an increase of these thermal characteristics when the SiO2/Na2O and CaO/Na2O ratios increase. Introducing Zn into the bioactive glasses induces a decrease of T f and an increase of TS. Contrary to crystals, prepared glasses have entropy different to zero at T = 0 K and vary versus T f. The excess entropy of pure glasses and Zn-doped glasses were calculated. The significant variations were registered.

Keywords

Bioactive glass Zinc Thermal characteristics Entropy 

References

  1. 1.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr. Bonding mechanism at the interface of ceramics prosthetic materials. J Biomed Mater Res Symp 2. 1971;5:117–41.CrossRefGoogle Scholar
  2. 2.
    Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T. Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation. J Mater Sci Mater Med. 1993;4:1–4.CrossRefGoogle Scholar
  3. 3.
    Vallet-Regı M, Izquierdo-Barba I, Salinas AJ. Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses. J Biomed Mater Res. 1999;46:560–5.CrossRefGoogle Scholar
  4. 4.
    Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials. 2005;26:5492–9.CrossRefGoogle Scholar
  5. 5.
    Yamaguchi M, Oishi H, Suketa Y. Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol. 1987;36:4007–12.CrossRefGoogle Scholar
  6. 6.
    Eberle J, Schmidmayer S, Erben RG, Stangassinger M, Roth HP. Skeletal effects of zinc deficiency in growing rats. J Trace Elem Med Bio. 1999;13:21–6.CrossRefGoogle Scholar
  7. 7.
    Chen D, Waite LC, Pierce JWM. In vitro effects of zinc on markers of bone formation. Biol Trace Elem Res. 1999;68:225–34.CrossRefGoogle Scholar
  8. 8.
    Wu X, Itoh N, Taniguchi T, Nakanishi T, Tatsu Y, Yumoto N, Tanaka K. Zinc-induced sodium-dependent vitamin c transporter 2 expression: potent roles for osteoblast differentiation. Arch Biochem Biophys. 2003;420:114–20.CrossRefGoogle Scholar
  9. 9.
    Sauer GR, Wuthier RE. Influence of trace metal ions on matrix vesicle calcification. Bone Miner. 1992;17:284–9.CrossRefGoogle Scholar
  10. 10.
    Sauer GR, Wu LNY, Iijima M, Wuthier RE. The influence of trace elements on calcium phosphate formation by matrix vesicles. J Inorg Biochem. 1997;65:57–65.CrossRefGoogle Scholar
  11. 11.
    Scholze H. Glas, Natur, Struktur und Eigenschaften. Berlin: Springer; 1977.Google Scholar
  12. 12.
    Barton J, Guillemet C. Le verre: science et technologie. Les Ulis: EDP Sciences; 2004.Google Scholar
  13. 13.
    Sułowska J, Wacławska I, Szumera M. Effect of copper addition on glass transition of silicate–phosphate glasses. J Therm Anal Calorim. 2012;109:705–10.CrossRefGoogle Scholar
  14. 14.
    Martinez V. Influence des effets thermiques et mécaniques sur la relaxation structurale des préformes et des fibres optiques à base de silice. Etude par diffusion de la lumière et par diffusion des rayons X. Thèse Université Lyon 1, numéro d’ordre 181; 2004: 8–10.Google Scholar
  15. 15.
    Patel AT, Pratap A. Study of kinetics of glass transition of metallic glasses. J Therm Anal Calorim. 2012;110:567–71.CrossRefGoogle Scholar
  16. 16.
    Szumera M, Waclawska I. Effect of molybdenum addition on the thermal properties of silicate-phosphate glasses. J Therm Anal Calorim. 2012;109:649–55.CrossRefGoogle Scholar
  17. 17.
    Gaur MS, Singh PK, Suruchi, Chauhan RS. Structural and thermal properties of polysulfone-ZnO nanocomposites. J Therm Anal Calorim. 2013;111:743–51.CrossRefGoogle Scholar
  18. 18.
    Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P. Qualitative and quantitative structure–property relationships analysis of multicomponent potential bioglasses. J Phys Chem B. 2005;109:4989–98.CrossRefGoogle Scholar
  19. 19.
    Gao P, Xue Z, Liu G, Zhang J, Zhang M. Effects of Zn on the glass forming ability and mechanical properties of MgLi-based bulk metallic glasses. J Non-Cryst Solids. 2012;358:8–13.CrossRefGoogle Scholar
  20. 20.
    Karbasi M, Saidi S, Aryanpour G. Study of structure and usage of mechanically alloyed nanocrystalline Ti–Cu–Zn powders in powder metallurgy. Powder Metall. 2008;51:250–3.CrossRefGoogle Scholar
  21. 21.
    Zarzycki J. Les verres et l’état vitreux. Paris: Masson; 1982.Google Scholar
  22. 22.
    Pascuta P, Bosca M, Borodi G, Culea E. Thermal structural and magnetic properties of some zinc phosphate glasses doped with manganese ions. J Alloys Compd. 2011;509:4314–9.CrossRefGoogle Scholar
  23. 23.
    Dietzel A. Glasstruktur und Glaseigenschaften. Glass Technol. 1968;22:41.Google Scholar
  24. 24.
    Kumar V, Sharma S, Pandey OP, Singh K. Thermal and physical properties of 30SrO–40SiO2–20B2O3–10A2O3 (A = La, Y, Al) glasses and their chemical reaction with bismuth vanadate for SOFC. Solid State Ionics. 2010;181:7.CrossRefGoogle Scholar
  25. 25.
    Bardez I. Etude des caractéristiques structurales et des propriétés de verres riches en terres rares destinés au confinement des produits de fission et éléments à vie longue. Thèse de l’Université Pierre et Marie, Curie Paris IV. Serial number D-11; 2004; 71–77.Google Scholar
  26. 26.
    Siqueira RL, Peitl O, Zanotto ED. Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Eng. 2011;31:983–91.CrossRefGoogle Scholar
  27. 27.
    Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17:967–78.CrossRefGoogle Scholar
  28. 28.
    Hench LL. Genetic design of bioactive glass. J Eur Ceram Soc. 2009;29:1257–65.CrossRefGoogle Scholar
  29. 29.
    Jones JR, Gentleman E, Polak J. Bioactive glass scaffolds for bone regeneration. Elements. 2007;3:393–9.CrossRefGoogle Scholar
  30. 30.
    Angeli F, Boscarino D, Gin S, Mea GD, Boizot B, Petit JC. Influence of calcium on sodium aluminosilicate glass leaching behaviour. Phys Chem Glasses. 2001;42:279.Google Scholar
  31. 31.
    Dietrich E, Oudadesse H, Lucas-Girot A, LeGal Y, Jeanne S, Cathelineau G. Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications. Appl Surf Sci. 2008;255:391–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.SCR, UMR CNRS 6226University of Rennes 1Rennes CedexFrance

Personalised recommendations