Skip to main content
Log in

Kinetic study of template removal of Al-MCM-41 synthesized at room temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The Al-MCM-41 molecular sieve with Si/Al = 20 molar ratio was synthesized at room temperature and characterized by X-ray diffractometry, surface area, thermogravimetry, and infrared spectroscopy. The kinetic study was conducted by Vyazovkin and Ozawa method, in order to verify the activation energy during the Hofmann degradation between 130 and 370 °C, in which most of surfactant removal occurs. The results suggest that the activation energy for template removal is close to 80 kJ mol−1 lower in Al-MCM-41 synthesized at room temperature, when compared to results obtained for mesopores Al-MCM-41 and MCM-41 synthesized by hydrothermal method. This lower activation energy may be understood as consequence of textural properties, such as higher pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parida KM, Rath D. Surface characterization and catalytic evaluation of copper-promoted Al-MCM-41 toward hydroxylation of phenol. J Colloid Interface Sci. 2009;340:209–17.

    Article  CAS  Google Scholar 

  2. Carrot MMLR, Conceição FL, Lopes JM, Carrott PJM, Bernardes C, Rocha J, Ribeiro FR. Comparative study of Al-MCM-41 materials prepared at room temperature with different aluminium sources and by some hydrothermal methods. Microporous Mesoporous Mater. 2006;92:270–85.

    Article  Google Scholar 

  3. Gaydhankar TR, Samuel V, Jha RK, Kumar R, Joshi PN. Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of sílica. Mater Res Bull. 2007;42:1473–84.

    Article  CAS  Google Scholar 

  4. Tuel A. Modification of mesoporoussilicas by incorporation of heteroelements in the framework. Microporous Mesoporous Mater. 1999;27:151–69.

    Article  CAS  Google Scholar 

  5. Carmo A Jr, Souza LKC, Costa CEF, Longo E, Zamian JR, Rocha Filho GN. Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel. 2009;88:461–8.

    Article  CAS  Google Scholar 

  6. Corma A, Fornes V, Navarro MT, Perez-Pariente. Acidity and stability of MCM-41 crystalline aluminosilicates. J Catal. 1994;148:569–74.

    Article  CAS  Google Scholar 

  7. Braga MR, Barros JMF, Melo DMA, Melo MAF, Aquino FM, Freitas JCO, Santiago RC. Kinetic study of template removal of MCM-41 derived from rice husk ash. J Therm Anal Calorim. 2013;111:1013–8.

    Article  CAS  Google Scholar 

  8. Leiva CRM, Crnkovic PM, Santos AM. O emprego da termogravimetria para determinar a energia de ativação do processo de combustão de óleos combustíveis. Quim Nova. 2006;29(5):940–6.

    Article  CAS  Google Scholar 

  9. Souza MJB, Silva AOS, Aquino JMFB, Fernandes VJ, Araujo AS. Kinetic study of template removal of MCM-41 nanostructure material. J Therm Anal Calorim. 2004;75:693–8.

    Article  CAS  Google Scholar 

  10. Araujo AS, Fernandes VJ, Souza MJB, Silva AOS, Aquino JMFB. Model free-kinetics applied to CTMA+ removal Al-MCM-41 molecular sieves. Thermochim Acta. 2004;413:235–40.

    Article  CAS  Google Scholar 

  11. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  12. Vyazovkin S, Goryachko V. Potentialities of software for kinetic processing of the thermoanalytical data by the isoconversion method. Thermochim Acta. 1992;194:221–30.

    Article  CAS  Google Scholar 

  13. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  14. Szegedi A, Kónya Z, Méhn D, Solymár E, Pál-Borbély G, Horváth ZE, Biró LP, Kiricsi I. Spherical mesoporous MCM-41 materials containing transition metals: synthesis and characterization. Appl Catal A Gen. 2004;272:257–66.

    Article  CAS  Google Scholar 

  15. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  16. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    Article  CAS  Google Scholar 

  17. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL. A new of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.

    Article  CAS  Google Scholar 

  18. Liu X, Sun H, Yng Y. Rapid synthesis of highly ordered Si-MCM-41. J Colloid Interface Sci. 2008;319:377–80.

    Article  CAS  Google Scholar 

  19. Yu J, Shi J-L, Wang L-Z, Ruan M-L, Yan D-S. Room temperature synthesis of mesoporous aluminosilicate materials. Ceram Int. 2000;26:359–62.

    Article  CAS  Google Scholar 

  20. Berezovska IS, Yanishpolskii VV, Tertykh VA. Synthesis of mesoporous silicas inside large pores of inorganic matrix. J Thermal Anal Cal. 2008;94(3):649–53.

    Article  CAS  Google Scholar 

  21. Kleitz F, Schmidt W, Schüth F. Calcination behavior of different surfactant-templatedmesostructured silica materials. Microporous Mesoporous Mater. 2003;65:1–29.

    Article  CAS  Google Scholar 

  22. Goworek J, Kierys A, Gac W, Borówka A, Kusak R. Thermal degradation of CTAB in as-synthesized MCM-41. J Therm Anal Calorim. 2009;96(2):375–82.

    Article  CAS  Google Scholar 

  23. Souza LKC, Pardauil JJR, Zamian JR, Rocha Filho GN, Costa CEF. Influence of the incorporated metal on template removal from MCM-41 type mesoporous materials. J Therm Anal Calorim. 2011;106:355–61.

    Article  CAS  Google Scholar 

  24. Souza JL, Kobelnik M, Ribeiro CA, Capela JMV, Crespi MS. Kinetic study of crystallization of PHB in presence of hydroxy acids. J Therm Anal Calorim. 2009;97:525–8.

    Article  Google Scholar 

  25. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  26. Chen D, Gao X, Dollimore D. A generalized from of the Kissinger equation. Thermochim Acta. 1993;215:109–17.

    Article  CAS  Google Scholar 

  27. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  28. Bastos FS, Lima OA, Filho Raymundo C, Fernandes LD. Mesporous molecular sieve MCM-41 synthesis from fluoride media. Braz J Chem Eng. 2011;28(4):649–58.

    CAS  Google Scholar 

Download references

Acknowledgements

C. P. de Macedo thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the doctoral scholarship, and also CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESPA (Fundação de Amparo à Pesquisa do estado do Pará) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz G. M. de Macedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Macedo, C.P., Negrão, C.A.B., de Macedo, L.G.M. et al. Kinetic study of template removal of Al-MCM-41 synthesized at room temperature. J Therm Anal Calorim 115, 31–36 (2014). https://doi.org/10.1007/s10973-013-3267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3267-0

Keywords

Navigation