Skip to main content
Log in

Low-temperature heat capacity and thermodynamic properties of layered perovskite-like oxides NaNdTiO4 and Na2Nd2Ti3O10

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We report the results of the study of thermodynamic properties for layered perovskite-like oxides NaNdTiO4 and Na2Nd2Ti3O10. Isobaric heat capacity of the compounds was measured in an adiabatic calorimeter in the range of 5–340 K. Low-temperature heat capacity anomaly was observed in the heat capacity curve of Na2Nd2Ti3O10. Standard thermodynamic properties of the oxides were evaluated from the experimental heat capacity temperature dependencies. Finally, on the basis of the experimental data obtained in this work, we tested applicability of the additivity principle for prediction of thermodynamic properties for layered compounds built of fragments of various structural types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ramesh R, Spaldin NA. Multiferroics: progress and prospects in thin films. Nat Mater. 2007;6:21–9.

    Article  CAS  Google Scholar 

  2. Bednorz JG, Müller KA, Takashige M. Superconductivity in alkaline earth-substituted La2CuO4-y . Science. 1987;236:73–5.

    Article  CAS  Google Scholar 

  3. Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature. 1996;380:141–4.

    Article  CAS  Google Scholar 

  4. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK. Complex impedance studies on a layered perovskite ceramic oxide—NaNdTiO4. Mater Sci Eng, B. 2005;116:7–13.

    Article  Google Scholar 

  5. Toda K, Yutaka K, Kurita S, Sato M. Crystal structure determination and ionic conductivity of layered perovskite compounds NaLnTiO4 (Ln = rare earth). J Alloy Compd. 1996;234:19–25.

    Article  CAS  Google Scholar 

  6. Shimizu K, Itoh S, Hatamachi T, Sato M, Toda K. Photocatalytic water splitting on Ni-intercalated Ruddlesden–Popper tantalate H2La2/3Ta2O7. Chem Mater. 2005;17:5161–6.

    Article  CAS  Google Scholar 

  7. Machida M, Miyazaki K, Matsushima S, Araic M. Photocatalytic properties of layered perovskite tantalates MLnTa2O7 (M = Cs, Rb, Na, and H; Ln = La, Pr, Nd, and Sm). J Mater Chem. 2003;13:1433–7.

    Article  CAS  Google Scholar 

  8. Tai YW, Chen JS, Yang CC, Wan BZ. Preparation of nano-gold on K2La2Ti3O10 for producing hydrogen from photocatalytic water splitting. Catal Today. 2004;97:95–101.

    Article  CAS  Google Scholar 

  9. Silyukov O, Chislov M, Burovikhina A, Utkina T, Zvereva I. Thermogravimetry study of ion exchange and hydration in layered oxide materials. J Therm Anal Calorim. 2012;110:187–92.

    Article  CAS  Google Scholar 

  10. Cao G, McCall SK, Crow JE. Ferromagnetism in Sr4Ru3O10: relationship to other layered metallic oxides. Phys Rev B. 1997;56:5740–3.

    Article  Google Scholar 

  11. Cao G, McCall SK, Shepard M, Crow JE, Guertin RP. Magnetic and transport properties of single-crystal Ca2RuO4: relationship to superconducting Sr2RuO4. Phys Rev B. 1997;56:2916–9.

    Article  Google Scholar 

  12. Wakeshima M, Harada D, Hinatsu Y. Crystal structures and magnetic properties of ordered perovskites Ba2 LnIrO6 (Ln = lanthanide). J Mater Chem. 2000;6:4–7.

    Google Scholar 

  13. Kyomen T, Itoh M. Calorimetric and structural studies of La1–x Y x AlO3 and Y1–x Lu x AlO3 crystals. J Therm Anal Calorim. 2002;69:813–9.

    Article  CAS  Google Scholar 

  14. Lin XN, Bondarenko VA, Cao G, Brill JW. Specific heat of Sr4Ru3O10. Solid State Commun. 2004;130:151–4.

    Article  CAS  Google Scholar 

  15. Akiyama K, Aoyama H, Abe N, Tojo T, Kawaji H, Atake T. Low-temperature thermodynamic properties of Gd2SrCo2O7. J Therm Anal Calorim. 2005;81:583–6.

    Article  CAS  Google Scholar 

  16. Neiner D, Spinu L, Golub V, Wiley J. Ferromagnetism in topochemically prepared layered perovskite Li0.3Ni0.85La2Ti3O10. Chem Mater. 2006;18:518–24.

    Article  CAS  Google Scholar 

  17. Umeyama N, Ikeda SI, Nagai I, Tanaka Y, Yoshida Y. Specific heat of layered ruthenates Sr2Ru1−x Zr x O4. AIP Conf Proc. 2006;850:537–8.

    Article  CAS  Google Scholar 

  18. Zinkevich M, Solak N, Nitsche H, Ahrens M, Aldinger F. Stability and thermodynamic functions of lanthanum nickelates. J Alloy Compd. 2007;438:92–9.

    Article  CAS  Google Scholar 

  19. Liu S, Miiller W, Liu Y, Avdeev M, Ling CD. Sillen–Aurivillius intergrowth phases as templates for naturally layered multiferroics. Chem Mater. 2012;24:3932–42.

    Article  CAS  Google Scholar 

  20. Ruddlesden SN, Popper P. New compounds of the K2NIF4 type. Acta Crystallogr. 1957;10:538–9.

    Article  CAS  Google Scholar 

  21. Abdulaeva L, Siluykov O, Zvereva I, Petrov Yu. Soft chemistry synthesis of complex oxides using protonic form of titanates HLnTiO4 (Ln = La, Nd). Solid State Phenom. 2013;194:113–6.

    Google Scholar 

  22. Zvereva IA, Sankovich AM, Missyul’ AB, Ugolkov VL. Mechanism of formation of the complex oxide Na2Nd2Ti3O10. Glass Phys Chem. 2010;36:209–16.

    Article  CAS  Google Scholar 

  23. Blokhin AV, Paulechka YU, Kabo GJ. Thermodynamic properties of [C6mim][NTf2] in the condensed state. J Chem Eng Data. 2006;51:1377–88.

    Article  CAS  Google Scholar 

  24. Zhu WJ, Feng HH, Hor PH. Synthesis and characterization of layered titanium oxides NaRTiO4 (R = La, Nd and Gd). Mater Res Bull. 1996;31:107–11.

    Article  CAS  Google Scholar 

  25. Missyul AB, Zvereva IA, Palstra TTM, Kurbakov AI. Double-layered Aurivillius-type ferroelectrics with magnetic moments. Mater Res Bull. 2010;45:546–50.

    Article  CAS  Google Scholar 

  26. Carlin RL. Magnetochemistry. Berlin, New York: Springer; 1986.

    Book  Google Scholar 

  27. Westrum EF. Lattice and Schottky contributions to the morphology of lanthanide heat capacities. J Chem Thermodyn. 1983;15:305–25.

    Article  CAS  Google Scholar 

  28. Cracknell AP, Tooke AO. The specific heats of magnetically-ordered materials. Contemp Phys. 1979;20:55–82.

    Article  CAS  Google Scholar 

  29. De Ligny D, Richet P, Westrum EF, Roux J. Heat capacity and entropy of rutile (TiO2) and nepheline (NaAlSiO4). Phys Chem Miner. 2002;29:267–72.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Foundation for Basic Research (N 12-03-00761) and Saint Petersburg State University research grant (Reg. 12.0.105.2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sviataslau V. Kohut.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohut, S.V., Sankovich, A.M., Blokhin, A.V. et al. Low-temperature heat capacity and thermodynamic properties of layered perovskite-like oxides NaNdTiO4 and Na2Nd2Ti3O10 . J Therm Anal Calorim 115, 119–126 (2014). https://doi.org/10.1007/s10973-013-3261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3261-6

Keywords

Navigation