Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 1, pp 259–266 | Cite as

Thermal stability of several polyaniline/rare earth oxide composites

Part IV. Polyaniline/La2O3 and polyaniline/Sm2O3 composites
  • Zihang Huang
  • Shaoxu Wang
  • Hui Li
  • Shihui Zhang
  • Zhicheng Tan


Polyaniline/rare earth oxide composites (PANI/La2O3 and PANI/Sm2O3) were synthesized by in situ polymerization at the presence of sulfosalicylic acid (as dopant). The composites obtained were characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal stability of the composites was investigated by thermogravimetry (TG) and derivative thermogravimetry (DTG). The electrochemical performance of the composites was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results of FTIR, XRD, SEM, CV, and EIS show that the structure of composite has changed greatly when rare earth oxide content is >0.7 g (PANI/La2O3[w/w(92.7/7.3)] and PANI/Sm2O3[w/w(96.2/3.8)]) and the PANI in the composite has transformed into pernigraniline base (non-conducting state) from emeraldine base (conducting state). TG-DTG analysis indicates that the thermal stability of composite was higher than pure PANI, which is attributed to the interaction between PANI and rare earth oxide.


PANI/La2O3 composite PANI/Sm2O3 composite Thermal stability TG-DTG Electrochemical performance 



The authors are gratefully acknowledged the National Natural Science Foundation of China under the Grant No. 20903017, the Science and Technology Foundation of Dalian under the Grant No. 2010J21DW010, and China Environmental Protection Foundation No. CEPF2010-123-2-17 for financial support to this study.


  1. 1.
    Hu ZA, Xie YL, Wang YX, Mo LP, Yang YY, Zhang ZY. Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater Chem Phys. 2009;114:990–5.CrossRefGoogle Scholar
  2. 2.
    Channu VSR, Holze R. Synthesis and characterization of a polyaniline-modified SnO2 nanocomposite. Ionics. 2012;18:495–500.CrossRefGoogle Scholar
  3. 3.
    Liang HC, Chen F, Li R, Wang L, Deng ZH. Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors. Electrochim Acta. 2004;49:3463–7.CrossRefGoogle Scholar
  4. 4.
    Aurian-Blajeni B, Beebe X, Rauh RD, Rose TL. Impedance of hydrated iridium oxide electrodes. Electrochim Acta. 1989;34:795–9.CrossRefGoogle Scholar
  5. 5.
    Kim YT, Tadai K, Mitani T. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J Mater Chem. 2005;15:4914–21.CrossRefGoogle Scholar
  6. 6.
    Banerjee S, Sarmah S, Kumar A. Photoluminescence studies in HCl-doped polyaniline nanofibers. J Opt. 2009;38(2):124–30.CrossRefGoogle Scholar
  7. 7.
    Chuang FY, Yang SM. Cerium dioxide/polyaniline core-shell nanocomposites. J Colloid Interface Sci. 2008;320:194–201.CrossRefGoogle Scholar
  8. 8.
    Han D, Chu Y, Yang L, Liu Y, Lv Z. Reversed micelle polymerization: a new route for the synthesis of DBSA-polyaniline nanoparticles. Colloid Surf A Physicochem Eng Aspects. 2005;259:179–87.CrossRefGoogle Scholar
  9. 9.
    Stejskal J, Sapurina I. Polyaniline: thin films and colloidal dispersions. Pure Appl Chem. 2005;77:815–26.CrossRefGoogle Scholar
  10. 10.
    Rather MS, Majid K, Wanchoo RK, Singla ML. Synthesis, characterization, and thermal study of polyaniline composite with the photoadduct of potassium hexacyanoferrate (II) involving hexamine ligand. J Therm Anal Calorim. 2012;. doi: 10.1007/s10973-012-2609-7.Google Scholar
  11. 11.
    Martins EPS, Botelho JR, Oliveira SF, Arakaki LNH, Fonseca MG, Espı′nola JGP. Thermal decomposition study of antimony (III) tribromide and aromatic amine adducts. J Therm Anal Calorim. 2009;97:427–31.CrossRefGoogle Scholar
  12. 12.
    Howell BA, Cho Y-J. Thermal decomposition of 2,4,4,5,5-pentaphenyl-1,3,2-dioxaphospholane. J Therm Anal Calorim. 2010;102:517–21.CrossRefGoogle Scholar
  13. 13.
    Yoshino S, Miyake A. Thermal decomposition properties of 1,2,4-triazole-3-one and guanidine nitrate mixtures. J Therm Anal Calorim. 2010;102:513–6.CrossRefGoogle Scholar
  14. 14.
    Howell BA, Chhetri P, Dumitrascu A, Stanton KN. Thermal degradation of platinum(IV) precursors to antitumor drugs. J Therm Anal Calorim. 2010;102:499–503.CrossRefGoogle Scholar
  15. 15.
    Sato Y, Funakoshi A, Okada K, Akiyoshi M, Matsunaga T, Koyama S, Ozawa M, Suzuki T. Study on thermal stability of tertiary pyridine resin. J Therm Anal Calorim. 2009;97:297–302.CrossRefGoogle Scholar
  16. 16.
    Corradini E, Teixeira EM, Paladin PD, Agnelli JA, Silva ORRF, Mattoso LHC. Thermal stability and degradation kinetics study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:415–9.CrossRefGoogle Scholar
  17. 17.
    Howell BA, Carter KE. Thermal stability of phosphinated diethyl tartrate. J Therm Anal Calorim. 2010;102:493–8.CrossRefGoogle Scholar
  18. 18.
    Huang ZH, Wang SX, Li H, Tan ZC. Thermal stability of several polyaniline/rare earth oxide composites: polyaniline/Nd2O3 composites. J Therm Anal Calorim. 2012;. doi: 10.1007/s10973-012-2738-z.Google Scholar
  19. 19.
    Khiew PS, Huang NM, Radiman S, Ahmad MS. Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Mater Lett. 2004;58:516–21.CrossRefGoogle Scholar
  20. 20.
    Feng W, Sun E, Fujii A, Wu H, Nihara K, Yoshino K. Synthesis and characterization of photoconducting polyaniline-TiO2 nanocomposite. Bull Chem Soc Jpn. 2000;73:2627–33.CrossRefGoogle Scholar
  21. 21.
    Wang SX, Huang ZH, Wang JH, Li YS, Tan ZC. Thermal stability of several polyaniline/rare earth oxide composites (I): polyaniline/CeO2 composites. J Therm Anal Calorim. 2012;107:1199–203.CrossRefGoogle Scholar
  22. 22.
    Wang SX, Sun LX, Tan ZC, Xu F, Li YS, Zhang T. Synthesis, characterization, and thermal analysis of polyaniline/Co3O4 composites. J Therm Anal Calorim. 2007;89:609–12.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Zihang Huang
    • 1
  • Shaoxu Wang
    • 1
  • Hui Li
    • 1
  • Shihui Zhang
    • 1
  • Zhicheng Tan
    • 2
  1. 1.College of Environmental and Chemical Engineering, Dalian Jiaotong UniversityDalianPeople’s Republic of China
  2. 2.Thermochemistry LaboratoryDalian Institute of Chemical Physics, Chinese Academy of ScienceDalianPeople’s Republic of China

Personalised recommendations