Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 1, pp 723–730 | Cite as

Desired form of polymorphism of 6-chloro-2,4-dinitroaniline crystals grown by controlled growth temperature in melt growth

  • V. Krishnakumar
  • M. Rajaboopathi


In this paper, the important form of a polymorphism of 6-chloro-2,4-dinitroaniline (CDA) crystals grown by the melt growth technique and its structure, physical, properties were discussed. Single crystals of form II and form III were grown by spontaneous nucleation of CDA melt. Unit cell parameters of these two forms were determined by the single-crystal X-ray diffraction technique. A powder X-ray diffraction pattern obtained from single-crystal data was compared with the experimental pattern. Functional groups presented in the molecules were identified by FTIR spectra, and packing difference between the two forms was realized by splitting of the absorption band and inter- and intramolecular interaction. DSC and TG/DTA analyses confirmed that each form has its own melting peak around 160 (form II) and 162 °C (form III) and there is no phase transition occurring between these forms. Harmonic vibrational frequency (β) of CDA was evaluated theoretically using HF/6-31G level and this value was compared with the experimental Kurtz–Perry technique. The calculated HOMO-LUMO energy shows that charge transfer occurred within the molecules.


Polymorphism Melt growth Powder X-ray diffraction Thermal analysis Hyperpolarizability 



The authors are grateful to DRDO–ERIP, New Delhi, for financial assistance under the major research project. We thank Prof. P. K. Das, Indian Institute of Science, Bangalore, for support in the SHG measurement and SAIF-IIT Madras for X-ray diffraction and thermal analysis.


  1. 1.
    Lian Y. Survival of the fittest polymorph: how fast nucleater can lose to fast grower. Cryst Eng Commun. 2007;9:847–51.CrossRefGoogle Scholar
  2. 2.
    Desiraju GR. Crystal engineering: the design of organic solids. New York: Elsevier; 1989.Google Scholar
  3. 3.
    Bernstein J, Davey RJ, Henck JO. Concomitant polymorphs. Angew Chem Int Ed. 1999;38:3440–61.CrossRefGoogle Scholar
  4. 4.
    Veesler S, Ferte N, Costes MS, Czjzek M, Astier JP. Temperature and pH effect on the polymorphism of aprotinin (BPTI) in sodium bromide solutions. Cryst Growth Des. 2004;4:1137–41.CrossRefGoogle Scholar
  5. 5.
    Kitamura M. Controlling factors and mechanism of polymorphic crystallization. Cryst Growth Des. 2004;4:1153–9.CrossRefGoogle Scholar
  6. 6.
    Li T, Ayers PW, Liu S, Swadley MJ, Medendorp CA. Crystallization force: a density functional theory concept for revealing intermolecular interactions and molecular packing in organic crystals. Chem Eur J. 2009;15:361–71.CrossRefGoogle Scholar
  7. 7.
    Sato K, Yoshimoto N, Suzuki M, Kobayashi M, Kaneko F. Structure and transformation in polymorphism of petroselinic acid ( acid). J Phys Chem. 1990;94:3180–5.CrossRefGoogle Scholar
  8. 8.
    Wishkerman S, Bernstein J, Stephens PW. Polymorphism in 4-methoxy-3-nitrobenzaldehyde. Cryst Growth Des. 2006;6:1366–73.CrossRefGoogle Scholar
  9. 9.
    Giron D. Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Thermochim Acta. 1995;248:1–59.CrossRefGoogle Scholar
  10. 10.
    Reddy CM, Basavoja S, Desiraju GR. Sorting of polymorphs based on mechanical properties. Trimorphs of 6-chloro-2,4-dinitroaniline. Chem Commun. 2005;0:2439–2441.Google Scholar
  11. 11.
    Bag PP, Chen M, Sun CC, Reddy CM. Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound. Cryst Eng Commun. 2012;14:3865–7.CrossRefGoogle Scholar
  12. 12.
    Dunitz JD, Bernstein J. Disappearing polymorphs. Acc Chem Res. 1995;28:193–200.CrossRefGoogle Scholar
  13. 13.
    Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J. Ritonavir: an extraordinary example of conformational polymorphism. J Pharm Res. 2001;18:859–66.CrossRefGoogle Scholar
  14. 14.
    Veesler S, Lafferrere L, Garcia E, Hoff C. Phase transitions in supersaturated drug solution. Org Process Res Dev. 2003;7:983–9.CrossRefGoogle Scholar
  15. 15.
    Repka MA, Majumdar S, Battu SK, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5:1357–76.CrossRefGoogle Scholar
  16. 16.
    Caira MR, Foppoli A, Sangalli ME, Zema L, Giordano F. Thermal and structural properties of ambroxol polymorphs. J Therm Anal Calorim. 2004;77:653–62.CrossRefGoogle Scholar
  17. 17.
    Pan F, Bosshard C, Wong MS, Serbutoviez C, Follonier S, Gunter P, Schenk K. Polymorphism, growth and characterization of a new organic nonlinear optical crystal: 4-dimethylaminobenzaldehyde-4-nitrophenylhydrazone (DANPH). J Cryst Growth. 1996;165:273–83.CrossRefGoogle Scholar
  18. 18.
    Diaz CIS, Martinislan AP, Cartwright JHE. Chiral symmetry breaking and polymorphism in 1,1′-binaphthyl melt crystallization. J Phys Chem B. 2005;109:18758–64.CrossRefGoogle Scholar
  19. 19.
    Mikhailenko MA. Growth of large single crystals of the orthorhombic paracetamol. J Cryst Growth. 2004;265:616–8.CrossRefGoogle Scholar
  20. 20.
    Ghosh AK, Woo EM, Sun YS, Lee LT, Wu MC. Characterization and analyses on complex melting, polymorphism, and crystal phases in melt-crystallized poly(hexamethylene terephthalate). Macromolecules. 2005;38:4780–90.CrossRefGoogle Scholar
  21. 21.
    Meille SV. Melt temperature effects on the polymorphic behaviour of melt-crystallized polypivalolactone. Polymer. 1994;35:2607–12.CrossRefGoogle Scholar
  22. 22.
    Lu M, Zhao X, Xiong XLC, Zhang J, Mai K, Wu C. Nucleation effect on polymorphism of melt-crystallized syndiotactic polystyrene. Polymer. 2011;52:1102–6.CrossRefGoogle Scholar
  23. 23.
    Carpentier L, Rharrassi KF, Derollez P, Guinet Y. Crystallization and polymorphism of l-arabitol. Thermochim Acta. 2013;556:63–7.CrossRefGoogle Scholar
  24. 24.
    Nichols G, Frampton CS. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J Pharm Sci. 1998;87:684–93.CrossRefGoogle Scholar
  25. 25.
    Vijayan N, Bhagavannarayana G, Babu RR, Gopalakrishnan R, Maurya KK, Ramasamy P. A comparative study on solution- and bridgman-grown single crystals of benzimidazole by high-resolution X-ray diffractometry, fourier transform infrared, microhardness, laser damage threshold, and second-harmonic generation measurements. Cryst Growth Des. 2006;6:1542–6.CrossRefGoogle Scholar
  26. 26.
    Munshi P, Venugopala KN, Jayashree BS, Guru Row TN. Concomitant polymorphism in 3-acetylcoumarin: role of weak C–H···O and C–H···π interactions. Cryst Growth Des. 2004;4:1105–7.CrossRefGoogle Scholar
  27. 27.
    Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res. 1990;23:120–6.CrossRefGoogle Scholar
  28. 28.
    Bernstein J, Davis RE, Shimoni L, Chang NL. Muster aus H-brücken: ihre funktionalität und ihre graphentheoretische analyse in kristallen. Angew Chem. 1995;107:1689–708.CrossRefGoogle Scholar
  29. 29.
    Desiraju GR. Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res. 2002;35:565–73.CrossRefGoogle Scholar
  30. 30.
    Steiner T. Die wasserstoffbrücke im festkörper. Angew Chem. 2002;114:50–80.CrossRefGoogle Scholar
  31. 31.
    Guthmuller J, Cecchet F, Lis D, Caudano Y, Mani AA, Thiry PA, Peremans A, Champagne B. Theoretical simulation of vibrational sum-frequency generation spectra from density functional theory: application to p-nitrothiophenol and 2,4-dinitroaniline. Chem Phys Chem. 2009;10:2132–42.CrossRefGoogle Scholar
  32. 32.
    Hoghes DL, Trotter J. Crystal structure of 2,6-dichloro-4-nitroaniline. J Chem Soc A. 1971;0:2181–4.CrossRefGoogle Scholar
  33. 33.
    George S. Infrared and Raman characteristic group frequencies, tables and charts. 3rd ed. Chichester: Wiley; 2001.Google Scholar
  34. 34.
    Piela K, Tyrk IT, Drozd M, Szostak MM. Polymorphism and cold crystallization in optically nonlinear N-benzyl-2-methyl-4-nitroaniline crystal studied by X-ray diffraction, calorimetry and Raman spectroscopy. J Mol Struct. 2011;991:42–9.CrossRefGoogle Scholar
  35. 35.
    Lakshmaiah B, Rao GR. Vibrational analysis of substituted anisoles. I-vibrational spectra and normal coordinate analysis of some fluoro and chloro compounds. J Raman Spectrosc. 1989;20:439–48.CrossRefGoogle Scholar
  36. 36.
    Sathyanarayana DN. Vibrational spectroscopy. Theory and applications. New Delhi: New Age International (P) Limited Publishers; 1996.Google Scholar
  37. 37.
    Roy S, Aitipamula S, Nangia A. Thermochemical analysis of venlafaxine hydrochloride polymorphs 1–5. Cryst Growth Des. 2005;5:2268–76.CrossRefGoogle Scholar
  38. 38.
    Nangia A. Conformational polymorphism in organic crystals. Acc Chem Res. 2008;41:594–604.CrossRefGoogle Scholar
  39. 39.
    Cherukuvada S, Thakuria R, Nangia A. Pyrazinamide polymorphs: relative stability and vibrational spectroscopy. Cryst Growth Des. 2010;10:3931–41.CrossRefGoogle Scholar
  40. 40.
    Halim HA, Cowan DO, Robinson DW, Wiygul FM, Kimura M. Preliminary study of the nonlinear optical properties of 4-amino-4′-nitrodiphenyl sulfide. J Phys Chem. 1986;90:5654–8.CrossRefGoogle Scholar
  41. 41.
    Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111:1033–7.CrossRefGoogle Scholar
  42. 42.
    Prasad LG, Krishnakumar V, Nagalakshmi R. Growth and nonlinear optical studies of N-acetyl-l-cysteine crystal. Eur Phys J Appl Phys. 2012;57:10201–8.CrossRefGoogle Scholar
  43. 43.
    Xavier TS, Rashid N, Joe IH. Vibrational spectra and DFT study of anticancer active molecule 2-(4-bromophenyl)-1H-benzimidazole by normal coordinate analysis. Spectrochim Acta Part A. 2011;78:319–26.CrossRefGoogle Scholar
  44. 44.
    Arivazhagan M, Jeyavijayan S. Vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 1,2-dichloro-4-nitrobenzene based on Hartree–Fock and DFT calculations. Spectrochim Acta Part A. 2011;79:376–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Department of PhysicsPeriyar UniversitySalemIndia

Personalised recommendations