Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 1, pp 301–310 | Cite as

Changes of polymorphism of lipid fractions of shortcrust pastries during storage

Studies with the use of thermal analysis (DSC)
  • Karolina Miśkiewicz
  • Ewa Nebesny
  • Justyna Rosicka-Kaczmarek


Differential scanning calorimetry (DSC) method allows to observe changes in polymorphism of fats, expressed as melting temperature and melting enthalpy of individual forms, created as a result of changes occurring in the structure of crystal lattice of a given lipid fraction. Degree of oxidation and hydrolysis of fat also influence the changes taking place in its polymorphism. The aim of this study was to establish the influence of kind of fat used for baking shortcrust pastries on selected properties of lipid fraction extracted from final product directly after baking and after storage. Changes of polymorphism in raw fats and fats extracted from shortcrust cookies were analyzed with the use of DSC. DSC analysis of raw fats revealed that the least amount of polymorphic forms had Akobake MP fat, the highest amounts of which can be found in Akobake BC fat and “Kasia” margarine (both three forms). The biggest changes in crystal lattice after baking process, compared to raw fat, took place in lipid fractions obtained from pasties obtained with the use of Akobake MP fat. In case of Akobake BC fat, in raw fat, the dominance of a form (59 J g−1) with a melting point around 3.5 °C and much smaller amounts of forms with melting temperatures of 25 and 35 °C, that is 3.2 and 7.5 J g−1, respectively, were observed. During storage, further lowering of melting temperature of a polymorphic form with the lowest value of maximal temperature of melting process (peak I) was noticed. This phenomena indicates that further changes take place in lipid fractions during storage of the final product.


DSC Fats and oils Oxidation Storage Polymorphic form 



The authors thank the National Research and Development Center for its financial support (Grant R12 0086 06) of this research.


  1. 1.
    Conforti FD. Cake manufacture. In: Hui YH, editor. Bakery products: science and technology. Ames: Blackwell; 2006. p. 393–410.CrossRefGoogle Scholar
  2. 2.
    O’Brien CM, Chapman D, Neville DP, Keogh MK, Arendt EK. Effect of varying the microencapsulation process on the functionality of hydrogenated vegetable fat in short dough biscuits. Food Res Int. 2003;36:215–21.CrossRefGoogle Scholar
  3. 3.
    Maszewska M, Żbikowska A, Matysiak K. Zmiany hydrolityczne i oksydacyjne zachodzące we frakcji lipidowej podczas wypieku i przechowywania wyrobów biszkoptowo-tłuszczowych. Acta Agrophysica. 2011;18(1):111–20 (in Polish).Google Scholar
  4. 4.
    Marmesat S, Morales A, Velasco J, Ruiz-Méndez MV, Dobarganes MC. Relationship between changes in peroxide value and conjugated dienes during oxidation of sunflower oils with different degree of unsaturation. Grasas y Aceities. 2009;60(2):155–60.CrossRefGoogle Scholar
  5. 5.
    Aro A. Complexity of issue of dietary trans fatty acids. Lancet. 2001;357(10):732.CrossRefGoogle Scholar
  6. 6.
    Pfeiffer M, Schrezenmeir J. Impact of trans fatty acids of ruminant origin compared with those from partially hydrogenated vegetable oils on CHD risk. Int Dairy J. 2006;16:1383–8.CrossRefGoogle Scholar
  7. 7.
    Vyazovkin S. Thermal analysis. Anal Chem. 2002;74:2749–62.CrossRefGoogle Scholar
  8. 8.
    Tavares MLA, Queiroz N, Santos IMG, Souza AL, Cavalcanti EHS, Barros AKD, Rosenhaim R, Soledade LEB, Souza AG. Sunflower biodiesel: use of P-DSC in the evaluation of antioxidant efficiency. J Therm Anal Calorim. 2011;106:575–9.CrossRefGoogle Scholar
  9. 9.
    Rodriguez RP, Siemens R, Verhelst S. Thermal and kinetic evaluation of biodiesel derived from soybean oil and higuereta oil. J Therm Anal Calorim. 2009;96:897–901.CrossRefGoogle Scholar
  10. 10.
    PN-EN ISO 660:1999 +A1. Oleje i tłuszcze roślinne oraz zwierzęce. Oznaczanie liczby kwasowej i kwasowości, 2005 (in Polish).Google Scholar
  11. 11.
    PN-EN ISO 3960. Oleje i tłuszcze roślinne oraz zwierzęce. Oznaczanie liczby nadtlenkowej, 1996 (in Polish).Google Scholar
  12. 12.
    PN-EN ISO 3656. Oleje i tłuszcze roślinne oraz zwierzęce—Oznaczanie absorbancji w nadfiolecie wyrażonej jako ekstynkcja właściwa w świetle UV, 2002 (in Polish).Google Scholar
  13. 13.
    Achremowicz B, Korus J. Potrzeba regulacji zawartości izomerów trans kwasów tluszczowych w żywności. Żywność Nauka Technologia Jakość. 2007;3(52):5–14.Google Scholar
  14. 14.
    Osawa C, Gonçalves L, Ragazzi S. Correlation between free fatty acids of vegetable oils evaluated by rapid tests and by the official method. J Food Comp Anal. 2007;20:523–8.CrossRefGoogle Scholar
  15. 15.
    PN-A86902. Oleje i tłuszcze roślinne i zwierzęce. Tłuszcze cukiernicze i piekarskie, 1997 (in Polish).Google Scholar
  16. 16.
    Drozdowski B., Lipidy W. Chemia żywności (red. Z.E. Sikorski). PWN Warszawa, 2002; 221–223 (in Polish).Google Scholar
  17. 17.
    Rutkowska J, Żbikowska A. Zmiany oksydacyjne zachodzące w margarynach płynnych podczas pieczenia i przechowywania zamrożonych ciast biszkoptowo-tłuszczowych. Bromat Chem Toksykol. 2006;39(2):141–6 (in Polish).Google Scholar
  18. 18.
    Żbikowska A, Krygier K, Rutkowska J. Wpływ zawartości izomerów trans na zmiany chemiczne zachodzące w tłuszczach podczas wypieku ciastek francuskich. Folia Universitatis Agriculturae Stetinensis. Scientia Alimentaria. 2005;246(4):313–20 (in Polish).Google Scholar
  19. 19.
    Żbikowska A, Kowalska M. Influence of trans unsaturated fatty acids content on chemical changes in the shortening during baking and storage of cakes. Pol J Food Nutr Sci. 2007;57(4):451–7.Google Scholar
  20. 20.
    Fishwick MJ, Swoboda PT. Measurement of oxidation of polyunsaturated fatty acids by spectrophotometric assay of conjugated derivatives. J Sci Food Agric. 1977;28:387–93.CrossRefGoogle Scholar
  21. 21.
    Tynek M, Drozdowski B. Monitorowanie oksydatywnotermicznych przemian tłuszczowych metodą spektrofotometryczną. Żywność Nauka Technologia Jakość. 1998;4(17):27–37 (in Polish).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Karolina Miśkiewicz
    • 1
  • Ewa Nebesny
    • 1
  • Justyna Rosicka-Kaczmarek
    • 1
  1. 1.Institute of Chemical Technology of Food, Faculty of Biotechnology and Food SciencesLodz University of TechnologyLodzPoland

Personalised recommendations