Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 2, pp 1137–1143 | Cite as

Synthesis and characterization of a novel copolymer of glyoxal dihydrazone and glyoxal dihydrazone bis(dithiocarbamate) and application in heavy metal ion removal from water

  • Jitender Gaur
  • Shilpa Jain
  • Rohit Bhatia
  • Arun Lal
  • Narender Kumar Kaushik
Article

Abstract

We demonstrate synthesis of water insoluble, novel copolymer PA1 from condensation of glyoxal dihydrazone and glyoxal dihydrazone bis(dithiocarbamate) monomers having high capacity to remove metal ions from aqueous solution. The presence of a high atomic percentage of nitrogen and sulfur atoms in PA1 leads to strong ligating ability with metal ions. The monomers and the polymer have been characterized by FTIR, UV–Visible spectroscopy, CHNS elemental analysis, NMR, MALDI-MS, and TG/DTA. As a proof of concept, the PA1 is tested for its ability to remove heavy metal ions Cu2+, Co2+, Fe2+, Ni2+, Mn2+, and CrO 7 2− from aqueous solutions. PA1 efficiently removed metals ions from the metal solutions. The highest absorption ability has been observed toward the iron salts where 0.969 g metal salt is absorbed by 1 g polymer. This study has implication for inexpensive and efficient polymer for purification of water.

Keywords

Glyoxal dihydrazone Bis(dithiocarbamate) Co-polymer Water purification Metal ion removal Green chemistry 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the University of Delhi, New Delhi, India. One of the authors, Jitender Gaur is thankful to the Council of Scientific and Industrial Research, India, for awarding a CSIR-SRF (NET).

Supplementary material

10973_2013_3136_MOESM1_ESM.docx (892 kb)
Supplementary material 1 (DOCX 891 kb)

References

  1. 1.
    Khan NA, Hasan Z, Jhung SH. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater. 2013;244–245:444–56.CrossRefGoogle Scholar
  2. 2.
    Varma AJ, Kennedy SV, Kennedy JF. Metal complexation by chitosan and its derivatives: a review. Carbohyd Polym. 2004;55:77–93.CrossRefGoogle Scholar
  3. 3.
    Huang SP, Franz KJ, Arnold EH, Devenyi J, Fish RH. Polymer pendant ligand chemistry-5. The selective and competitive removal of Ag+, Hg2+, Cu2+, Pb2+ and Cd2+ ions from aqueous solution utilizing a n-sulfonylethylenebis(dithiocarbamate) ligand anchored on macroporous polystyrene-divinylbenzene beads. Polyhedron. 1996;15:4241–54.CrossRefGoogle Scholar
  4. 4.
    Tabakci M, Erdemir S, Yilmaz M. Preparation, characterization of cellulose-grafted with calix[4]arene polymers for the adsorption of heavy metals and dichromate anions. J Hazard Mater. 2007;148:428–35.CrossRefGoogle Scholar
  5. 5.
    Duran A, Soylak M, Tuncel SA. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. J Hazard Mater. 2008;155:114–20.CrossRefGoogle Scholar
  6. 6.
    Cojocaru C, Zakrzewska-Trznadel G, Jaworska A. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. Part 1: optimization of complexation conditions. J Hazard Mater. 2009;169:599–609.CrossRefGoogle Scholar
  7. 7.
    Mitchell PCH, Taylor MG. Binding of some first-row transition metal ions by a poly(iminoethylene)dithiocarbamate copolymer. Polyhedron. 1982;1:225–31.CrossRefGoogle Scholar
  8. 8.
    Murthy RS, Ryan DE. Preconcentration of copper, cadmium, mercury and lead from sea and tap water samples on a dithiocarbamate cellulose derivative. Anal Chim Acta. 1982;140:163–9.CrossRefGoogle Scholar
  9. 9.
    Suzuki MT, Yokoyama T. Preparation and chelation properties of the polystyrene resins containing pendant multidentate ligands. Polyhedron. 1983;2:127–8.CrossRefGoogle Scholar
  10. 10.
    Mathew B, Pillai VNR. Crosslinked polystyrene-supported dithiocarbamates as metal complexing agents. Eur Polym J. 1994;30:61–5.CrossRefGoogle Scholar
  11. 11.
    Venkatesan KA, Srinivasan TG, Rao PRV. Removal of complexed mercury from aqueous solutions using dithiocarbamate grafted on silica gel. Sep Sci Technol. 2002;37:1417–29.CrossRefGoogle Scholar
  12. 12.
    Humeres E, De Souza E, Debacher NA, Aliev AE. Synthesis and coordinating ability of chitosan dithiocarbamate and analogs towards Cu(II) ions. J Phys Org Chem. 2002;15:852–7.CrossRefGoogle Scholar
  13. 13.
    Lehotay J, Liska O, Brandsterova E, Guichon G. Liquid chromatography of metal complexes of N-disubstituted dithiocarbamic acids : III. High-performance liquid chromatography of bisdialkyldithiocarbamate complexes of copper(II), cobalt(II), zinc(II) and lead(II). J Chromatogr. 1979;172:379–83.CrossRefGoogle Scholar
  14. 14.
    Riekkola ML. Capillary gas chromatography of some metal chelates of dipropyl- and dibutyldithiocarbamic acids. Mikrochim Acta. 1982;1:327–34.CrossRefGoogle Scholar
  15. 15.
    Memon S, Akceylan E, Sap B, Tabakci M, Roundhill DM. Polymer supported calix[4]arene derivatives for the extraction of metals and dichromate anions. J Polym Environ. 2003;11:67–74.CrossRefGoogle Scholar
  16. 16.
    Bekri-Abbes I, Bayoudh S, Baklouti M. Converting waste polystyrene into adsorbent: potential use in the removal of lead and cadmium ions from aqueous solution. J Polym Environ. 2006;14:249–56.CrossRefGoogle Scholar
  17. 17.
    Barreto ACH, Costa MM, Sombra ASB, Rosa DS, Nascimento RF. Chemically modified banana fiber: structure, dielectrical properties and biodegradability. J Polym Environ. 2010;18:523–31.CrossRefGoogle Scholar
  18. 18.
    Fares MM, Tahboub YR, Khatatbeh ST, Abul-Haija YM. Eco-friendly, vascular shape and interpenetrating poly (acrylic acid) grafted pectin hydrogels; biosorption and desorption investigations. J Polym Environ. 2011;19:431–9.CrossRefGoogle Scholar
  19. 19.
    Chan WK, Chen Y, Peng Z, Yu L. Rational designs of multifunctional polymers. J Am Chem Soc. 1993;115:11735–43.CrossRefGoogle Scholar
  20. 20.
    Hogarth G. Progress in inorganic chemistry, vol 53, Karlin KD, editors. Hoboken: John Wiley & Sons, Inc.; 2005. doi: 10.1002/0471725587.ch2.
  21. 21.
    Chaloner-Gill B, Cheer CJJ, Roberts E, Euler WB. Structure of glyoxal dihydrazone and synthesis, characterization, and iodine doping of unsubstituted polyazine. Macromolecules. 1990;23:4597–603.CrossRefGoogle Scholar
  22. 22.
    Chaloner-Gill B, Euler WB, Roberts JE. Carbon-13 and nitrogen-15 solid-state NMR of partially methyl substituted polyazines. Macromolecules. 1991;24:3074–80.CrossRefGoogle Scholar
  23. 23.
    Euler WB, Cheng M, Zhao C. New Ru(bpy)2L2+ complexes where L is a linear oligoazine. Polyhedron. 2001;20:507–14.CrossRefGoogle Scholar
  24. 24.
    Euler WB, Cheng M, Zhao C. Pentacoordinated diolefinic rhodium(I) organocomplexes with α-diimine ligands. Crystal structures of [Rh(Nbd)(LL)(PPh3)]ClO4(Nbd = norbornadiene; LL = Bdh, biacetylidihydrazone; Pvdh, pyruvaldihydrazone; Bda, biacetyldianil). J Organomet Chem. 2000;601:311–9.CrossRefGoogle Scholar
  25. 25.
    Tanzer C, Price R, Breitmaier E, Jung G, Voelter W. α-Diimine-metal chelates: cyclic delocalization of π-electrons and 13c chemical shifts. Angew Chem Int Ed. 1970;9:963–4.CrossRefGoogle Scholar
  26. 26.
    Kliegman JM, Barnes RK. The conformation and NMR of conjugated diimines. Tetrahedron Lett. 1969;24:1953–6.CrossRefGoogle Scholar
  27. 27.
    Granell J, Green MLH, Lowe VJ, Marder SR, Mountford P, Saunders GC, Walker NM. Studies on the synthesis and electrochemistry of crown ether dithiocarbamates and the molecular dynamics of bis(aza-15-crown-5)thiuram disulphide. Crystal structure of cobalt tris[(aza-15-crown-5)dithiocarbamate]. J Chem Soc Dalton Trans. 1990; 605–614.Google Scholar
  28. 28.
    Kaul KN, Malik AK, Lark BS, Rao ALJ. Spectrophotometric determination of cobalt, nickel, copper, palladium and molybdenum using sodium diethyldithiocarbamate in the presence of surfactants. Rev Roum Chim. 2000;45:221–6.Google Scholar
  29. 29.
    Uden PC, Bigley IE. High-pressure liquid chromatography of metal diethyl-dithiocarbamates with u.v. and d.c. argon-plasma emission spectroscopic detection. Anal Chim Acta. 1977;94:29–34.CrossRefGoogle Scholar
  30. 30.
    Giovagnini L, Sitran S, Montopoli M, Caparrotta L, Corsini M, Rosani C, Zanello P, Dou QP, Fregona D. Chemical and biological profiles of novel copper(II) complexes containing S-donor ligands for the treatment of cancer. Inorg Chem. 2008;47:6336–43.CrossRefGoogle Scholar
  31. 31.
    Babić-Samardžija K, Khaled KF, Hackerman N. Investigation of the inhibiting action of O-, S-and N-dithiocarbamato(1,4,8,11-tetraazacyclotetradecane)cobalt(III) complexes on the corrosion of iron in HClO4 acid. Appl Surf Sci. 2005;240:327–40.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Jitender Gaur
    • 1
    • 2
    • 3
  • Shilpa Jain
    • 2
    • 3
  • Rohit Bhatia
    • 1
  • Arun Lal
    • 1
  • Narender Kumar Kaushik
    • 1
  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia
  2. 2.J & S Research and InnovationsNew DelhiIndia
  3. 3.CSIR-National Physical LaboratoryDr. K. S. Krishnan MargNew DelhiIndia

Personalised recommendations