Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 3, pp 1183–1189 | Cite as

Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model

  • Lili Li
  • Gang Wang
  • Shaoyu Wang
  • Song Qin


Jerusalem artichoke has great potential as future feedstock for bioenergy production because of its high tuber yield (up to 90 t ha−1), appropriate biomass characteristics, low input demand, and positive environmental impact. The pyrolytic and kinetic characteristics of Jerusalem artichoke tubers were analyzed at heating rates of 5, 10, 20 and 30 °C min−1. TG and DTG curves in an inert (nitrogen) atmosphere suggested that there were three distinct stages of mass loss and the major loss occurs between about 190–380 °C. Heating rate brought a lateral shift toward right in the temperature. And, it not only affects the temperature at which the highest mass loss rate reached, but also affect the maximum rate of mass loss. The distributed activation energy model (DAEM) was used to study the pyrolysis kinetics and provided reasonable fits to the experimental data. The activation energy (E) of tubers ranged from 146.40 to 232.45 kJ mol−1, and the frequency factor (A) changed greatly corresponding to E values at different mass conversion.


Biomass Jerusalem artichoke Pyrolysis Thermogravimetric Distributed activation energy model 



This work was supported by the Ocean Public Welfare Scientific Research Project, State Oceanic Administration of China (Grant No. 201205027) and National Key Technology R&D Program of China (Grant No. 2013BAB01B00).


  1. 1.
    Kim SS, Kim J, Park YH, Park YK. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresour Technol. 2010;101:9797–802.CrossRefGoogle Scholar
  2. 2.
    Wongsiriamnuay T, Tippayawong N. Thermogravimetric analysis of giant sensitive plants under air atmosphere. Bioresour Technol. 2010;101:9314–20.CrossRefGoogle Scholar
  3. 3.
    Baldini M, Danuso F, Turi M, Vannozzi P. Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind Crop Prod. 2004;19:25–40.CrossRefGoogle Scholar
  4. 4.
    Li LL, Li L, Wang YP, Du YG, Qin S. Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett. 2012. doi: 10.1007/s10529-012-1104-3.
  5. 5.
    Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88:1024–30.CrossRefGoogle Scholar
  6. 6.
    Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98:325–30.CrossRefGoogle Scholar
  7. 7.
    Aboulkas A, El Harfi K, Nadifiyine M, El Bouadili A. Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. J Therm Anal Calorim. 2008;91:737–43.CrossRefGoogle Scholar
  8. 8.
    Solomon P, Hamblen D, Carangelo R, Serio M, Deshpande G. General model of coal devolatilization. Energy Fuel. 1988;2:405–22.CrossRefGoogle Scholar
  9. 9.
    Pitt GJ. The kinetics of the evolution of volatile products from coal. Fuel. 1962;41:267–74.Google Scholar
  10. 10.
    Cai J, Liu R. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour Technol. 2008;99:2795–9.CrossRefGoogle Scholar
  11. 11.
    Ma F, Zeng Y, Wang J, Yang Y, Yang X, Zhang X. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model. Bioresour Technol. 2013;128:417–22.CrossRefGoogle Scholar
  12. 12.
    Shen DK, Gu S, Jin BS, Fang MX. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresour Technol. 2011;102:2047–52.CrossRefGoogle Scholar
  13. 13.
    Varhegyi G, Bobaly B, Jakab E, Chen HG. Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuel. 2011;25:24–32.CrossRefGoogle Scholar
  14. 14.
    Wang G, Li W, Li BQ, Chen HK. TG study on pyrolysis of biomass and its three components under syngas. Fuel. 2008;87:552–8.CrossRefGoogle Scholar
  15. 15.
    Miura K. A new and simple method to estimate f (E) and k 0 (E) in the distributed activation energy model from three sets of experimental data. Energy Fuel. 1995;9:302–7.CrossRefGoogle Scholar
  16. 16.
    Li D, Chen L, Zhang X, Ye N, Xing F. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenerg. 2011;35:1765–72.CrossRefGoogle Scholar
  17. 17.
    Zou SP, Wu YL, Yang MD, Li C, Tong JM. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–65.CrossRefGoogle Scholar
  18. 18.
    Zhao H, Yan H, Zhang C, Sun B, Zhang Y, Dong S, Xue Y, Qin S. Thermogravimetry study of pyrolytic characteristics and kinetics of the giant wetland plant Phragmites australis. J Therm Anal Calorim. 2012;110:1–7.CrossRefGoogle Scholar
  19. 19.
    Tonbul Y, Saydut A, Yurdako K, Hamamci C. A kinetic investigation on the pyrolysis of Seguruk asphaltite. J Therm Anal Calorim. 2009;95:197–202.CrossRefGoogle Scholar
  20. 20.
    Xu GY, Fang BZ, Sun GG. Kinetic study of decomposition of wheat distiller grains and steam gasification of the corresponding pyrolysis char. J Therm Anal Calorim. 2012;108:109–17.CrossRefGoogle Scholar
  21. 21.
    Huang H, Wang K, Klein M, Calkins W. Determination of coal rank by thermogravimetric analysis. Preprint Paper Am Chem Soc Div Fuel Chem. 1995;40:465–9.Google Scholar
  22. 22.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  23. 23.
    Li D, Chen L, Yi X, Zhang X, Ye N. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol. 2010;101:7131–6.CrossRefGoogle Scholar
  24. 24.
    Ngo TA, Kim J, Kim SS. Characteristics and kinetics of cattle litter pyrolysis in a tubing reactor. Bioresour Technol. 2010;101:S104–8.CrossRefGoogle Scholar
  25. 25.
    Varhegyi G, Chen HG, Godoy S. Thermal decomposition of wheat, oat, barley, and brassica carinata straws: a kinetic study. Energy Fuel. 2009;23:646–52.CrossRefGoogle Scholar
  26. 26.
    Giuntoli J, Arvelakis S, Spliethoff H, de Jong W, Verkooijen AHM. Quantitative and kinetic thermogravimetric Fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues: influence of different pretreatments. Energy Fuel. 2009;23:5695–706.CrossRefGoogle Scholar
  27. 27.
    Skodras G, Grammelis P, Basinas P, Kaidis S, Kakaras E, Sakellaropoulos GP. A kinetic study on the devolatilisation of animal derived byproducts. Fuel Process Technol. 2007;88:787–94.CrossRefGoogle Scholar
  28. 28.
    Haykiri-Acma H, Yaman S. Thermal reactivity of rapeseed (Brassica napus L.) under different gas atmospheres. Bioresour Technol. 2008;99:237–42.CrossRefGoogle Scholar
  29. 29.
    Jeguirim M, Dorge S, Trouve G. Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresour Technol. 2010;101:788–93.CrossRefGoogle Scholar
  30. 30.
    Sun WG, Zhao H, Yan HX, Sun BB, Dong SS, Zhang CW, Qin S. The pyrolysis characteristics and kinetics of Jerusalem artichoke stalk using thermogravimetric analysis. Energy Source Part A. 2012;34:626–35.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantaiChina
  2. 2.China Agriculture UniversityYantaiChina

Personalised recommendations