Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1543–1549 | Cite as

Application and analysis of a DSC-Raman spectroscopy for indium and poly(lactic acid)

  • T. Suzuki
  • K. Takahashi
  • H. Uehara
  • T. Yamanobe


Simultaneous measurement system of DSC-Raman spectroscopy and its analysis method are developed. The developed method was applied to the melting of Indium and the optimum laser irradiation condition was determined. The obtained result of the heat flow is similar to the modulated DSC and the precise melting temperature and the heat of fusion can be obtained from the analyzed DSC. DSC-Raman spectroscopy is also applied to PLLA. Analyzed data indicate the existence of the recrystallization behavior in addition to T g and T m. Corresponding to these transitions, Raman peak shifts, intensities, and widths varied. From those results, it is proved that DSC-Raman spectroscopy is useful for the analysis of thermal property of the polymer in connection with the polymer structure.


DSC Raman spectroscopy PLLA Intermitted laser irradiation Heat flow analysis of modulation Crystallization 


  1. 1.
    Soutzidou M, Panas A, Viras K. Differential scanning calorimetry (DSC) and Raman spectroscopy study of poly(dimethylsiloxane). J Polym Sci Part B Polym Phys. 1998;36:2805–10.CrossRefGoogle Scholar
  2. 2.
    Mano JF, Gómez Ribellesc JL, Alvesa NM, Salmerón Sanchez M. Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer. 2005;46:8258–65.CrossRefGoogle Scholar
  3. 3.
    Sasaki T, Morino D, Tabata N. Origin of enhanced cold crystallization rate for freeze-dried poly(l-lactide) from solutions. Polym Eng Sci. 2011;51:1858–65.CrossRefGoogle Scholar
  4. 4.
    Suzuki T, Tsujii T, Hagiwara S, Fujimori H. Transitions of liquid crystal sample by DSC-Raman. Abstracts of 46th JCCT2010 2010;148.Google Scholar
  5. 5.
    Wunderlich B, Androsch R, Pydaa M, Kwonb YK. Heat capacity by multi-frequencies sawtooth modulation. Thermochim Acta. 2000;348:181–90.CrossRefGoogle Scholar
  6. 6.
    Kamasa P, Buzina A, Pyda M, Wunderlich B. The use of infra-red light-modulated temperature in DSC created by pulse-width modulation. Thermochim Acta. 2002;381:139–46.CrossRefGoogle Scholar
  7. 7.
    Saruyama Y. Quasi-isothermal measurement of frequency dependent heat capacity of semicrystalline polyethylene at the melting temperature using light heating modulated temperature DSC. Thermochim Acta. 1999;330:101–7.CrossRefGoogle Scholar
  8. 8.
    Cassel B, Divito M. Use of DSC to obtain accurate thermodynamic and kinetic data. Am Lab. 1994;26:18–9.Google Scholar
  9. 9.
    Nakai Y, Ahmed El-Said Aboutaleb AE, Yamanobe K, Saleh SI, Ahmed MO. Study of the interaction of clobazam with cyclodextrins in solution and in the solid state. Chem Pharm Bull. 1990;38:728–32.CrossRefGoogle Scholar
  10. 10.
    Tan HY, Effendi Widjaja E, Boey F, Loo SCJ. Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA. J Biomed Mater Res Part B App Biomater. 2009;91:433–40.CrossRefGoogle Scholar
  11. 11.
    DiLorenzo ML, Wunderlich B. Melting of polymers by non-isothermal, temperature-modulated calorimetry: analysis of various irreversible latent heat contributions to the reversing heat capacity. Thermochim Acta. 2003;405:255–68.CrossRefGoogle Scholar
  12. 12.
    Kamimoto M, Takahashi Y. Precise measurement of the heat capacity by DSC. Netsusokutei. 1986;13(1):9–16.Google Scholar
  13. 13.
    Saruyama Y, Assche GV. Mathematical modeling of the thermal system of modulated temperature differential scanning calorimeter. Thermochim Acta. 2002;391:87–95.CrossRefGoogle Scholar
  14. 14.
    Mohamed A, Gordon SH, Biresaw G. Poly(lactic acid)/polystyrene bioblends characterized by thermogravimetric analysis, differential scanning calorimetry, and photoacoustic infrared spectroscopy. J Appl Polym Sci. 2007;106:1689–96.CrossRefGoogle Scholar
  15. 15.
    Kakiage M, Sekiya M, Yamanobe T, Komoto T, Sasaki S, Murakamic S, Uehara H. In situ SAXS analysis of extended-chain crystallization during melt-drawing of ultra-high molecular weight polyethylene. Polymer. 2007;48:7385–92.CrossRefGoogle Scholar
  16. 16.
    Chen X, Kalish J, Hsu SL. Structure evolution of α′-phase poly(lactic acid). J Polym Sci Part B Polym Phys. 2011;49:1446–54.CrossRefGoogle Scholar
  17. 17.
    Jarmel S, Marques DAS, Simões PN, Carvalho RA, Batista CMSG, Araujo-Andrade C, Gil MH, Fausto R. Experimental (IR/Raman and 1H/13C NMR) and Theoretical (DFT) Studies of the Preferential Conformations Adopted by l-Lactic Acid Oligomers and Poly(l-lactic acid) Homopolymer. J. Phys. Chem. B. 2012;116:9–21.CrossRefGoogle Scholar
  18. 18.
    Radjabian M, Kish MH, Mohammadi N. Characterization of poly(lactic acid) multifilament yarns. I. The structure and thermal behavior. J Appl Polym Sci. 2010;117:1516–25.CrossRefGoogle Scholar
  19. 19.
    Tanaka M, Young J. Molecular orientation distributions in uniaxially oriented poly(l-lactic acid) films determined by polarized Raman spectroscopy. Macromolecules. 2006;39:3312–21.CrossRefGoogle Scholar
  20. 20.
    Park MS, Wong YS, Park JO, Venkartaman SS, Srinivasarao M. A simple method for obtaining the information of orientation distribution using polarized raman spectroscopy: orientation study of structural Units in poly(lactic acid). Macromolecules. 2011;44:2120–31.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • T. Suzuki
    • 1
    • 3
  • K. Takahashi
    • 2
  • H. Uehara
    • 3
  • T. Yamanobe
    • 3
  1. 1.Perkinelmer Japan Co. Ltd.Yokohama-shiJapan
  2. 2.Tokyo Polytechnic UniversityAtsugi, KanagawaJapan
  3. 3.Gunma UniversityKiryu-shi, GunmaJapan

Personalised recommendations