Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 3, pp 1003–1013 | Cite as

Crystallization kinetics of Ag-doped Se–Bi–Te chalcogenide glasses

  • Anup Kumar
  • P. B. Barman
  • Raman Sharma
Article

Abstract

Effect of Ag doping on the crystallization kinetics of amorphous Se80.5Bi1.5Te18−yAgy (for y = 0, 1.0, 1.5, and 2.0 at.%) glassy alloys has been studied by differential scanning calorimetry (DSC). The DSC curves recorded at four different heating rates are analyzed to determine the transition temperature, activation energy, thermal stability, glass forming ability, and dimensionality of growth during phase transformation. Present study shows that the thermal stability and the glass-forming ability increase with an increase in the Ag content which is in agreement with the earlier studies. Our results show that Se80.5Bi1.5Te16Ag2 composition is thermally more stable and has a little tendency to crystallize in comparison to other compositions under study. The increase in thermal stability with increasing Ag concentration is attributed to an increase in the cohesive energy.

Keywords

Chalcogenide glasses Glass transition Thermal stability Glass forming ability Non-isothermal Avrami exponent 

Notes

Acknowledgments

We are thankful to Prof. Kulvir Singh, Thaper University Patiala, for scanning our samples on Diamond Pyris (Perkin Elmer) DSC and valuable suggestions regarding the work.

References

  1. 1.
    Wang MF, Jang MS, Huang JC, Lee CS. Synthesis and characterization of quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9. J Solid State Chem. 2009;182:1450–6.CrossRefGoogle Scholar
  2. 2.
    Yahia IS, Hegab NA, Shakra AM, Al-Ribaty AM. Conduction mechanism and the dielectric relaxation process of a-Se75Te25−xGax (x = 0, 5, 10 and 15 at wt%) chalcogenide glasses. Phys B Phys Condens Matter. 2012;407:2476–85.CrossRefGoogle Scholar
  3. 3.
    Singh AK. A short over view on advantage of chalcogenide glassy alloys. J Non Oxide Glasses. 2012;3:1–4.Google Scholar
  4. 4.
    Chandel N, Mehta N, Kumar A. Investigation of a. c. conductivity measurements in a-Se80Te20 and a-Se80Te10M10 (M = Cd, in, Sb) alloys using correlated barrier hopping model. Curr Appl Phys. 2012;12:405–12.CrossRefGoogle Scholar
  5. 5.
    Ahmad M, Thangaraj R, Sathiaraj TS. Heterogeneous crystallization and composition dependence of optical parameters in Sn–Sb–Bi–Se chalcogenides. J Mater Sci. 2010;45:1231–6.CrossRefGoogle Scholar
  6. 6.
    Kotkata MF, Mansour A. Study of glass transition kinetics of selenium matrix alloyed with up to 10 % indium. J Therm Anal Calorim. 2011;103:555–61.CrossRefGoogle Scholar
  7. 7.
    Wakkad MM. Crystallization kinetics of Pb20Ge17Se63 and Pb20Ge22Se58 chalcogenide glasses. J Therm Anal Calorim. 2001;63:533–47.CrossRefGoogle Scholar
  8. 8.
    Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non Cryst Solids. 1986;81:129–34.CrossRefGoogle Scholar
  9. 9.
    Deepika, Jain PK, Rathore KS, Saxena N. Structural characterization and phase transformation kinetics of Se58Ge42−xPbx (x = 9, 12) chalcogenide glasses. J Non Cryst Solids. 2009;355:1274–80.Google Scholar
  10. 10.
    Al-Ghamdi AA, Alvi MA, Khan SA. Non-isothermal crystallization kinetic study on Ga15Se85−xAgx chalcogenide glasses by using differential scanning calorimetry. J Alloys Compd. 2011;509:2087–93.CrossRefGoogle Scholar
  11. 11.
    Marseglia EA, Davis EA. Crystallization of amorphous selenium and As0.005Se0.995. J Non Cryst Solids. 1982;50:13–21.CrossRefGoogle Scholar
  12. 12.
    Matsur M, Suski K. Kinematical transformations of amorphous selenium by DTA measurement. J Mater Sci. 1979;14:395–400.CrossRefGoogle Scholar
  13. 13.
    Surinach S, Baro MD, Clavaguera-Mora MT, Claaguera N. Kinetic study of isothermal and continuous heating crystallization in GeSe2GeTeSb2Te3 alloy glasses. J Non Cryst Solids. 1983;58:209–17.CrossRefGoogle Scholar
  14. 14.
    Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54:253–75.CrossRefGoogle Scholar
  15. 15.
    Chander R, Thangaraj R. Thermal and optical analysis of Te-substituted Sn–Sb–Se chalcogenide semiconductors. J Appl Phys A. 2010;99:181–7.CrossRefGoogle Scholar
  16. 16.
    Joraid AA. The effect of temperature on non-isothermal crystallization kinetics and surface structure of selenium thin films. Phys B. 2007;390:263–9.CrossRefGoogle Scholar
  17. 17.
    Lopez-Almany PL, Vazqez J, Villares P, Jimnez-Garay R. Application of the single-scan calorimetric technique to the crystallization of the semiconducting Sb(0.16)AS(0.29)Se(0.55) alloy. J Non Cryst Solids. 2001;287:171–6.CrossRefGoogle Scholar
  18. 18.
    Joraid AA, Alamri SN, Abu-Sehly AA. Model-free method for analysis of non-isothermal kinetics of a bulk sample of selenium. J Non Cryst Solids. 2008;354:3380–7.CrossRefGoogle Scholar
  19. 19.
    Kumar S, Singh K. Glass transition, thermal stability and glass forming tendency of Se90−xTe5Sn5Inx multi-component chalcogenide glasses. Thermochim Acta. 2012;528:32–7.CrossRefGoogle Scholar
  20. 20.
    Dohare C, Mehta N, Kumar A. Effect of some metallic additives (Ag, Cd, Zn) on the crystallization kinetics of glassy Se70Te30 alloy. Mater Chem Phys. 2011;127:208–13.CrossRefGoogle Scholar
  21. 21.
    Li B, Xie Y, Xu Y, Wu C, Li Z. Selected-control solution-phase route to multiple-dendritic and cuboidal structures of PbSe. Solid State Chem. 2006;179:56–61.CrossRefGoogle Scholar
  22. 22.
    Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.CrossRefGoogle Scholar
  23. 23.
    Hrdlicka M, Prikryl J, Pavlista M, Benes L, Vlcek M, Frumar F. Optical parameters of In–Se and In–Se–Te thin amorphous films prepared by pulsed laser deposition. J Phys Chem Solids. 2007;68:846–9.CrossRefGoogle Scholar
  24. 24.
    Abdel-Wahab Fouad. Observation of phase separation in some Se–Te–Sn chalcogenide glasses. Phys B. 2011;406:1053–9.CrossRefGoogle Scholar
  25. 25.
    Nagels P, Tichy L, Tiska A, Ticha H. Photoconductivity of vitreous chalcogenides chemically modified by bismuth. J Non Cryst Solids. 1983;50–60:999–1002.Google Scholar
  26. 26.
    Toghe N, Yamamoto Y, Minami T, Tanka M. Preparation of n type semiconducting Ge20Bi10Se70 glass. J Appl Phys Lett. 1979;34:640–1.CrossRefGoogle Scholar
  27. 27.
    Mitkova M, Boncheva-Mladenova Z. Glass-forming region and some properties of the glasses from the system Se–Te–Ag. Monatshefte fuer Chemie. 1989;120:643–50.CrossRefGoogle Scholar
  28. 28.
    Frumar M, Wagner T. Ag doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci. 2003;7:117–26.CrossRefGoogle Scholar
  29. 29.
    Garrido JMC, Macoretta F, Urena MA, Arcondo Z. Application of Ag–Ge–Se based chalcogenide glasses on ion-selective electrodes. J Non Cryst Solids. 2009;355:2079–82.CrossRefGoogle Scholar
  30. 30.
    Piarristeguy AA, Cuello GJ, Arcondo B, Pradel A, Ribes M. Neutron thermodiffractometry study of silver chalcogenide glasses. J Non Cryst Solids. 2007;353:1243–6.CrossRefGoogle Scholar
  31. 31.
    Shakra AM, Fayek SA, Hegab NA, Yahia IS, AL-Ribaty AM. Crystallization kinetics of a-Se75Te25−xGax (x = 0, 5, 10 and 15 at wt%) glassy system. J Non Cryst Solids. 2012;358:1591–8.CrossRefGoogle Scholar
  32. 32.
    Dohare C, Mehta N. Investigation of crystallization kinetics in glassy Se and binary Se98M2 (M = Ag, Cd, Zn) alloys using DSC technique in non-isothermal mode. J Cryst Proc Technol. 2012;2:167–74.Google Scholar
  33. 33.
    Schubert J, et al. Multi component thin films for electrochemical sensor applications prepared by pulsed laser deposition. Sens Actuators B Chem B. 2001;76:327–30.CrossRefGoogle Scholar
  34. 34.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.CrossRefGoogle Scholar
  35. 35.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  36. 36.
    Mohynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.CrossRefGoogle Scholar
  37. 37.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.CrossRefGoogle Scholar
  38. 38.
    Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non Cryst Solids. 1986;88:11–34.CrossRefGoogle Scholar
  39. 39.
    Matusita K, Konatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.CrossRefGoogle Scholar
  40. 40.
    Patial BS, Thakur N, Tripathi SK. On the crystallization kinetics of In additive Se–Te chalcogenide glasses. J Thermochim Acta. 2011;513:1–8.CrossRefGoogle Scholar
  41. 41.
    Bindra KS, Suri N, Kamboj MS, Thangaraj P. Calorimetric analysis of Ag doped amorphous Se-Sb chalcogenide glasses. J Ovonic Research. 2007;3:1–13.Google Scholar
  42. 42.
    Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.CrossRefGoogle Scholar
  43. 43.
    Imran MMA, Bhandari D, Saxena NS. Enthalpy recovery during structural relaxation of Se96In4 chalcogenide glass. Phys B. 2001;293:394–401.CrossRefGoogle Scholar
  44. 44.
    Patial BS, Thakur N, Tripathi SK. Crystallization study of Sn additive Se–Te chalcogenide alloys. J Therm Anal Calorim. 2011;106:845–52.CrossRefGoogle Scholar
  45. 45.
    Avrami M. Kinetics of phase change.-I general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  46. 46.
    Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  47. 47.
    Avrami M. Granulation, phase change and microstructure kinetics of phase change III. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  48. 48.
    Imran MMA, Saxena NS, Husain M. Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100−xInx (x = 2, 4 and 10) semiconducting glasses. Phys Status Solid A. 2000;181:357–68.CrossRefGoogle Scholar
  49. 49.
    Uhlmann DR. A kinetic treatment of glass formation. J Non Cryst Solids. 1972;7:337–48.CrossRefGoogle Scholar
  50. 50.
    Hruby A. Evaluation of glass-forming tendency by means of DTA. Czechoslov J Phys B. 1972;22:1187–93.Google Scholar
  51. 51.
    Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19–20:11–8.CrossRefGoogle Scholar
  52. 52.
    Dietzel A. Glass structure and glass properties. Glasstech Ber. 1968;22:41–50.Google Scholar
  53. 53.
    Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater Res Bull. 2006;41:1664–72.CrossRefGoogle Scholar
  54. 54.
    Kumar A, Heera P, Sharma P, Barman PB, Sharma R. Compositional dependence of optical parameters in Se–Bi–Te–Ag thin films. J Non Cryst Solids. 2012;358:3223–8.CrossRefGoogle Scholar
  55. 55.
    Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Department of PhysicsHimachal Pradesh UniversityShimlaIndia
  2. 2.Department of PhysicsJaypee University of Information TechnologySolanIndia
  3. 3.Department of PhysicsGovernment Degree CollegeKulluIndia

Personalised recommendations