Skip to main content
Log in

Crystallization kinetics of Ag-doped Se–Bi–Te chalcogenide glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Effect of Ag doping on the crystallization kinetics of amorphous Se80.5Bi1.5Te18−yAgy (for y = 0, 1.0, 1.5, and 2.0 at.%) glassy alloys has been studied by differential scanning calorimetry (DSC). The DSC curves recorded at four different heating rates are analyzed to determine the transition temperature, activation energy, thermal stability, glass forming ability, and dimensionality of growth during phase transformation. Present study shows that the thermal stability and the glass-forming ability increase with an increase in the Ag content which is in agreement with the earlier studies. Our results show that Se80.5Bi1.5Te16Ag2 composition is thermally more stable and has a little tendency to crystallize in comparison to other compositions under study. The increase in thermal stability with increasing Ag concentration is attributed to an increase in the cohesive energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang MF, Jang MS, Huang JC, Lee CS. Synthesis and characterization of quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9. J Solid State Chem. 2009;182:1450–6.

    Article  CAS  Google Scholar 

  2. Yahia IS, Hegab NA, Shakra AM, Al-Ribaty AM. Conduction mechanism and the dielectric relaxation process of a-Se75Te25−xGax (x = 0, 5, 10 and 15 at wt%) chalcogenide glasses. Phys B Phys Condens Matter. 2012;407:2476–85.

    Article  CAS  Google Scholar 

  3. Singh AK. A short over view on advantage of chalcogenide glassy alloys. J Non Oxide Glasses. 2012;3:1–4.

    CAS  Google Scholar 

  4. Chandel N, Mehta N, Kumar A. Investigation of a. c. conductivity measurements in a-Se80Te20 and a-Se80Te10M10 (M = Cd, in, Sb) alloys using correlated barrier hopping model. Curr Appl Phys. 2012;12:405–12.

    Article  Google Scholar 

  5. Ahmad M, Thangaraj R, Sathiaraj TS. Heterogeneous crystallization and composition dependence of optical parameters in Sn–Sb–Bi–Se chalcogenides. J Mater Sci. 2010;45:1231–6.

    Article  CAS  Google Scholar 

  6. Kotkata MF, Mansour A. Study of glass transition kinetics of selenium matrix alloyed with up to 10 % indium. J Therm Anal Calorim. 2011;103:555–61.

    Article  CAS  Google Scholar 

  7. Wakkad MM. Crystallization kinetics of Pb20Ge17Se63 and Pb20Ge22Se58 chalcogenide glasses. J Therm Anal Calorim. 2001;63:533–47.

    Article  CAS  Google Scholar 

  8. Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non Cryst Solids. 1986;81:129–34.

    Article  CAS  Google Scholar 

  9. Deepika, Jain PK, Rathore KS, Saxena N. Structural characterization and phase transformation kinetics of Se58Ge42−xPbx (x = 9, 12) chalcogenide glasses. J Non Cryst Solids. 2009;355:1274–80.

  10. Al-Ghamdi AA, Alvi MA, Khan SA. Non-isothermal crystallization kinetic study on Ga15Se85−xAgx chalcogenide glasses by using differential scanning calorimetry. J Alloys Compd. 2011;509:2087–93.

    Article  CAS  Google Scholar 

  11. Marseglia EA, Davis EA. Crystallization of amorphous selenium and As0.005Se0.995. J Non Cryst Solids. 1982;50:13–21.

    Article  CAS  Google Scholar 

  12. Matsur M, Suski K. Kinematical transformations of amorphous selenium by DTA measurement. J Mater Sci. 1979;14:395–400.

    Article  Google Scholar 

  13. Surinach S, Baro MD, Clavaguera-Mora MT, Claaguera N. Kinetic study of isothermal and continuous heating crystallization in GeSe2GeTeSb2Te3 alloy glasses. J Non Cryst Solids. 1983;58:209–17.

    Article  CAS  Google Scholar 

  14. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54:253–75.

    Article  CAS  Google Scholar 

  15. Chander R, Thangaraj R. Thermal and optical analysis of Te-substituted Sn–Sb–Se chalcogenide semiconductors. J Appl Phys A. 2010;99:181–7.

    Article  CAS  Google Scholar 

  16. Joraid AA. The effect of temperature on non-isothermal crystallization kinetics and surface structure of selenium thin films. Phys B. 2007;390:263–9.

    Article  CAS  Google Scholar 

  17. Lopez-Almany PL, Vazqez J, Villares P, Jimnez-Garay R. Application of the single-scan calorimetric technique to the crystallization of the semiconducting Sb(0.16)AS(0.29)Se(0.55) alloy. J Non Cryst Solids. 2001;287:171–6.

    Article  Google Scholar 

  18. Joraid AA, Alamri SN, Abu-Sehly AA. Model-free method for analysis of non-isothermal kinetics of a bulk sample of selenium. J Non Cryst Solids. 2008;354:3380–7.

    Article  CAS  Google Scholar 

  19. Kumar S, Singh K. Glass transition, thermal stability and glass forming tendency of Se90−xTe5Sn5Inx multi-component chalcogenide glasses. Thermochim Acta. 2012;528:32–7.

    Article  CAS  Google Scholar 

  20. Dohare C, Mehta N, Kumar A. Effect of some metallic additives (Ag, Cd, Zn) on the crystallization kinetics of glassy Se70Te30 alloy. Mater Chem Phys. 2011;127:208–13.

    Article  CAS  Google Scholar 

  21. Li B, Xie Y, Xu Y, Wu C, Li Z. Selected-control solution-phase route to multiple-dendritic and cuboidal structures of PbSe. Solid State Chem. 2006;179:56–61.

    Article  CAS  Google Scholar 

  22. Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.

    Article  CAS  Google Scholar 

  23. Hrdlicka M, Prikryl J, Pavlista M, Benes L, Vlcek M, Frumar F. Optical parameters of In–Se and In–Se–Te thin amorphous films prepared by pulsed laser deposition. J Phys Chem Solids. 2007;68:846–9.

    Article  CAS  Google Scholar 

  24. Abdel-Wahab Fouad. Observation of phase separation in some Se–Te–Sn chalcogenide glasses. Phys B. 2011;406:1053–9.

    Article  CAS  Google Scholar 

  25. Nagels P, Tichy L, Tiska A, Ticha H. Photoconductivity of vitreous chalcogenides chemically modified by bismuth. J Non Cryst Solids. 1983;50–60:999–1002.

    Google Scholar 

  26. Toghe N, Yamamoto Y, Minami T, Tanka M. Preparation of n type semiconducting Ge20Bi10Se70 glass. J Appl Phys Lett. 1979;34:640–1.

    Article  Google Scholar 

  27. Mitkova M, Boncheva-Mladenova Z. Glass-forming region and some properties of the glasses from the system Se–Te–Ag. Monatshefte fuer Chemie. 1989;120:643–50.

    Article  CAS  Google Scholar 

  28. Frumar M, Wagner T. Ag doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci. 2003;7:117–26.

    Article  CAS  Google Scholar 

  29. Garrido JMC, Macoretta F, Urena MA, Arcondo Z. Application of Ag–Ge–Se based chalcogenide glasses on ion-selective electrodes. J Non Cryst Solids. 2009;355:2079–82.

    Article  Google Scholar 

  30. Piarristeguy AA, Cuello GJ, Arcondo B, Pradel A, Ribes M. Neutron thermodiffractometry study of silver chalcogenide glasses. J Non Cryst Solids. 2007;353:1243–6.

    Article  CAS  Google Scholar 

  31. Shakra AM, Fayek SA, Hegab NA, Yahia IS, AL-Ribaty AM. Crystallization kinetics of a-Se75Te25−xGax (x = 0, 5, 10 and 15 at wt%) glassy system. J Non Cryst Solids. 2012;358:1591–8.

    Article  CAS  Google Scholar 

  32. Dohare C, Mehta N. Investigation of crystallization kinetics in glassy Se and binary Se98M2 (M = Ag, Cd, Zn) alloys using DSC technique in non-isothermal mode. J Cryst Proc Technol. 2012;2:167–74.

    Google Scholar 

  33. Schubert J, et al. Multi component thin films for electrochemical sensor applications prepared by pulsed laser deposition. Sens Actuators B Chem B. 2001;76:327–30.

    Article  CAS  Google Scholar 

  34. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  35. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  36. Mohynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  Google Scholar 

  37. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.

    Article  CAS  Google Scholar 

  38. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  39. Matusita K, Konatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  40. Patial BS, Thakur N, Tripathi SK. On the crystallization kinetics of In additive Se–Te chalcogenide glasses. J Thermochim Acta. 2011;513:1–8.

    Article  CAS  Google Scholar 

  41. Bindra KS, Suri N, Kamboj MS, Thangaraj P. Calorimetric analysis of Ag doped amorphous Se-Sb chalcogenide glasses. J Ovonic Research. 2007;3:1–13.

    CAS  Google Scholar 

  42. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  43. Imran MMA, Bhandari D, Saxena NS. Enthalpy recovery during structural relaxation of Se96In4 chalcogenide glass. Phys B. 2001;293:394–401.

    Article  CAS  Google Scholar 

  44. Patial BS, Thakur N, Tripathi SK. Crystallization study of Sn additive Se–Te chalcogenide alloys. J Therm Anal Calorim. 2011;106:845–52.

    Article  CAS  Google Scholar 

  45. Avrami M. Kinetics of phase change.-I general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  46. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  47. Avrami M. Granulation, phase change and microstructure kinetics of phase change III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  48. Imran MMA, Saxena NS, Husain M. Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100−xInx (x = 2, 4 and 10) semiconducting glasses. Phys Status Solid A. 2000;181:357–68.

    Article  CAS  Google Scholar 

  49. Uhlmann DR. A kinetic treatment of glass formation. J Non Cryst Solids. 1972;7:337–48.

    Article  CAS  Google Scholar 

  50. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czechoslov J Phys B. 1972;22:1187–93.

    Google Scholar 

  51. Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19–20:11–8.

    Article  Google Scholar 

  52. Dietzel A. Glass structure and glass properties. Glasstech Ber. 1968;22:41–50.

    Google Scholar 

  53. Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater Res Bull. 2006;41:1664–72.

    Article  CAS  Google Scholar 

  54. Kumar A, Heera P, Sharma P, Barman PB, Sharma R. Compositional dependence of optical parameters in Se–Bi–Te–Ag thin films. J Non Cryst Solids. 2012;358:3223–8.

    Article  CAS  Google Scholar 

  55. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Prof. Kulvir Singh, Thaper University Patiala, for scanning our samples on Diamond Pyris (Perkin Elmer) DSC and valuable suggestions regarding the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Barman, P.B. & Sharma, R. Crystallization kinetics of Ag-doped Se–Bi–Te chalcogenide glasses. J Therm Anal Calorim 114, 1003–1013 (2013). https://doi.org/10.1007/s10973-013-3055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3055-x

Keywords

Navigation