Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 2, pp 465–472 | Cite as

Comparative study on thermal cracking of Athabasca bitumen

Evaluation of the activation energy and prediction of the isothermal conversion by different isoconversional methods
  • Nashaat N. Nassar
  • Azfar Hassan
  • German Luna
  • Pedro Pereira-Almao


In this study, three commonly used isoconversional methods, namely: Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS), and the advanced non-linear integral method of Vyazovkin (NLN) were employed for the first time for calculating the activation energy for thermal cracking of Athabasca bitumen under inert conditions. Thermal cracking of Athabasca bitumen was carried out at nonisothermal conditions at different heating rates under nitrogen atmosphere using thermogravimetic analyzer (TG). One isothermal TG experiment was conducted for model prediction. Differences in the values of activation energy determined from the three methods selected have been demonstrated. These differences were mainly attributed to the approximations used for the temperature integral employed in the integral methods. Nonetheless, all the methods tested in this study provided satisfactory isothermal predictions. The study showed that, among the three methods tested, the NLN method provided more accurate results. This is because NLN is approximation free and uses small time segments for the temperature integral.


Athabasca bitumen Activation energy Ozawa–Flynn–Wall Kissinger–Akahira–Sunose Vyazovkin 



Financial support provided by Carbon Management Canada, Inc. (CMC-NCE), a research network financed by the National Science and Engineering Research Council (NSERC), is gratefully acknowledged. Thanks to Mr. Lante Carbognani for his fruitful discussions during the preparation of the article.


  1. 1.
    Hassan A, Carbognani L, Pereira-Almao P. Oxidation of oils and bitumen at various O2 concentrations. Energy Fuels. 2010;24(10):5378–86.CrossRefGoogle Scholar
  2. 2.
    Nassar NN, Hassan A, Pereira-Almao P. Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuels. 2011;25(4):1566–70.CrossRefGoogle Scholar
  3. 3.
    Nassar NN, Hassan A, Pereira-Almao P. Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuels. 2011;25(3):1017–23.CrossRefGoogle Scholar
  4. 4.
    Nassar NN, Pereira-Almao P. Capturing H2S(g) by in situ-prepared ultradispersed metal oxide particles in an oilsand-packed bed column. Energy Fuels. 2010;24(11):5903–6.CrossRefGoogle Scholar
  5. 5.
    Government of Alberta. Environmental management of Alberta’s oilsands. 2009. Accessed 15 Sept 2012.
  6. 6.
    Butler RM. Thermal recovery of oil and bitumen. Englewood: Prentice-Hall; 1991.Google Scholar
  7. 7.
    Saskoil SS, Butler RM. The production of conventional heavy oil reservoirs with bottom water using steam-assisted gravity drainage. J Can Pet Technol. 1990;29:78–86.Google Scholar
  8. 8.
    Kok MV, Okandan E. Kinetic analysis of in situ combustion processes with thermogravimetric and differential thermogravimetric analysis and reaction tube experiments. J Anal Appl Pyrol. 1995;31:63–73.CrossRefGoogle Scholar
  9. 9.
    Speight JG. Thermal cracking of Athabasca bitumen, Athabasca asphaltenes, and Athabasca deasphalted heavy oil. Fuel. 1970;49(2):134–45.CrossRefGoogle Scholar
  10. 10.
    Phillips CR, Hsieh I-C. Oxidation reaction kinetics of Athabasca bitumen. Fuel. 1985;64(7):985–9.CrossRefGoogle Scholar
  11. 11.
    Jia N, et al. Kinetic modeling of thermal cracking reactions. Fuel. 2009;88(8):1376–82.CrossRefGoogle Scholar
  12. 12.
    Yoshiki KS, Phillips CR. Kinetics of the thermo-oxidative and thermal cracking reactions of Athabasca bitumen. Fuel. 1985;64(11):1591–8.CrossRefGoogle Scholar
  13. 13.
    Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100(1):109–18.CrossRefGoogle Scholar
  14. 14.
    Agrawal RK. Kinetic analysis of complex reactions. J Therm Anal Calorim. 1986;31(6):1253–62.CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  16. 16.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  17. 17.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.CrossRefGoogle Scholar
  18. 18.
    Flynn JH. The isoconversional method for determination of energy of activation at constant heating rates. J Therm Anal Calorim. 1983;27(1):95–102.CrossRefGoogle Scholar
  19. 19.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  20. 20.
    Bousaid IS, Ramey JH Jr. Oxidation of crude oil in porous media. Soc. Pet. Eng. J. 1968;8(2):137–48.Google Scholar
  21. 21.
    Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60(2):641–58.CrossRefGoogle Scholar
  22. 22.
    Vyazovkin SV, Lesnikovich AI. Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters. Thermochim Acta. 1988;128:297–300.CrossRefGoogle Scholar
  23. 23.
    Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.CrossRefGoogle Scholar
  24. 24.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Report Chiba Inst Technol Sci Technol. 1971;16:22–31.Google Scholar
  25. 25.
    Liu Z, et al. Arrhenius parameters determination in non-isothermal conditions for the uncatalyzed gasification of carbon by carbon dioxide. Thermochim Acta. 2011;512(1–2):1–4.CrossRefGoogle Scholar
  26. 26.
    Liu J, et al. Pyrolysis treatment of oil sludge and model-free kinetics analysis. J Hazard Mater. 2009;161(2–3):1208–15.CrossRefGoogle Scholar
  27. 27.
    Farjas J, Roura P. Isoconversional analysis of solid state transformations. J Therm Anal Calorim. 2011;105(3):757–66.CrossRefGoogle Scholar
  28. 28.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.CrossRefGoogle Scholar
  29. 29.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  30. 30.
    Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207(4994):290–1.CrossRefGoogle Scholar
  31. 31.
    Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.CrossRefGoogle Scholar
  32. 32.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32.CrossRefGoogle Scholar
  33. 33.
    Vyazovkin S, et al. Kinetics of the thermal and thermo-oxidative degradation of a polystyrene–clay nanocomposite. Macromol Rapid Commun. 2004;25(3):498–503.CrossRefGoogle Scholar
  34. 34.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28(2):95–101.CrossRefGoogle Scholar
  35. 35.
    Sbirrazzuoli N, et al. Integral, differential and advanced isoconversional methods: Complex mechanisms and isothermal predicted conversion-time curves. Chemometrics and Intelligent Laboratory Systems. 2009;96(2):219–26.CrossRefGoogle Scholar
  36. 36.
    Roduit B, et al. Evaluating sadt by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93(1):153–61.CrossRefGoogle Scholar
  37. 37.
    Sbirrazzuoli N. Is the friedman method applicable to transformations with temperature dependent reaction heat? Macromol Chem Phys. 2007;208(14):1592–7.CrossRefGoogle Scholar
  38. 38.
    Castro M, et al. Predicting adsorption isotherms of asphaltenes in porous materials. Fluid Phase Equilib. 2009;286(2):113–9.CrossRefGoogle Scholar
  39. 39.
    Criado J, Sánchez-Jiménez P, Pérez-Maqueda L. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92(1):199–203.CrossRefGoogle Scholar
  40. 40.
    Vyazovkin S. Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?”. Thermochim Acta. 2003;397(1–2):269–71.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Nashaat N. Nassar
    • 1
  • Azfar Hassan
    • 1
  • German Luna
    • 1
  • Pedro Pereira-Almao
    • 1
  1. 1.Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations