Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 2, pp 573–579 | Cite as

Composition heterogeneity of tetrafluoroethylene-hexafluoropropylene random copolymers characterized by successive self-nucleation and annealing

  • L. Liu
  • Z. Z. Tong
  • J. T. Xu
  • Z. Q. Fan
  • K. M. Yu
Article

Abstract

In the present work, successive self-nucleation and annealing (SSA) was applied to a series of tetrafluoroethylene-hexafluoropropylene random copolymers (FEPs). Multiple melting peaks were observed for all FEP samples after SSA thermal treatment. The lamellar crystal thicknesses were calculated from the melting temperatures, and the mass percentages of the crystals of specific thickness were obtained from the areas of the melting peaks. As a result, distributions of the lamellar thickness, which can be correlated to the composition distribution, were determined. It was found that the composition distribution of the FEP samples tended to become more heterogeneous as the content of hexafluoropropylene (HFP) comonomer increases. Samples with the same HFP content might also have different composition distributions.

Keywords

Successive self-nucleation and annealing Composition distribution Tetrafluoroethylene-hexafluoropropylene random copolymer 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (2011CB606005) and the National Natural Science Foundation of China (51073138).

References

  1. 1.
    Uno T, Wakayama Y, Tokita M, Miyata S, Shirai H. Characterization for melt-spun fiber of fluorocarbon polymer 1. Copolymer of tetrafluoroethylene and hexafluoropropylene. Sen-I Gakkaishi. 2000;56:569–73.CrossRefGoogle Scholar
  2. 2.
    Wu S. Dynamic rheology and molecular-weight distribution of insoluble polymers—tetrafluoroethylene hexafluoropropylene copolymers. Macromolecules. 1985;18:2023–30.CrossRefGoogle Scholar
  3. 3.
    Teramachi S, Hasegawa A, Matsumoto T, Kitahara K, Tsukahara Y, Yamashita Y. Determination of chemical-composition distribution of poly(methyl methacrylate)-graft-polystyrene by adsorption high-performance liquid-chromatography. Macromolecules. 1992;25:4025–31.CrossRefGoogle Scholar
  4. 4.
    Tobita H. Bivariate distribution of chain length and composition in multicomponent polymerization. Polymer. 1998;39:2367–72.CrossRefGoogle Scholar
  5. 5.
    Kramer I, Pasch H, Handel H, Albert K. Chemical heterogeneity analysis of high-conversion poly(styrene-co-(ethyl acrylate))s by NMR and on-line coupled SEC-NMR. Macromol Chem Phys. 1999;200:1734–44.CrossRefGoogle Scholar
  6. 6.
    Montaudo MS, Montaudo G. Bivariate distribution in PMMA/PBA copolymers by combined SEC/NMR and SEC/MALDI measurements. Macromolecules. 1999;32:7015–22.CrossRefGoogle Scholar
  7. 7.
    Braun D, Kramer I, Pasch H. Phase separation in random copolymers from high conversion free radical copolymerization 4. Chemical heterogeneity analysis of poly((methyl methacrylate)-co-(ethyl acrylate)) and poly((methyl methacrylate)-co-(butyl acrylate)) by gradient HPLC and the effect on glass transition. Macromol Chem Phys. 2000;201:1048–57.CrossRefGoogle Scholar
  8. 8.
    Tobita H. Multivariate composition distribution in free-radical multicomponent polymerization 1. Exact calculation method using generating function. Macromol Theory Simul. 2003;12:463–9.CrossRefGoogle Scholar
  9. 9.
    Tobita H. Multivariate composition distribution in free-radical multicomponent polymerization 2. Approximation using multivariate normal distribution. Macromol Theory Simul. 2003;12:470–5.CrossRefGoogle Scholar
  10. 10.
    Alb AM, Enohnyaket P, Drenski MF, Head A, Reed AW, Reed WF. Online monitoring of copolymerization involving comonomers of similar spectral characteristics. Macromolecules. 2006;39:5705–13.CrossRefGoogle Scholar
  11. 11.
    Al-Harthi MA, Masihullah JK, Abbasi SH, Soares JBP. Dynamic monte carlo simulation of ATRP in a batch reactor. Macromol Theory Simul. 2009;18:307–16.CrossRefGoogle Scholar
  12. 12.
    Starck P. Studies of the comonomer distributions in low density polyethylenes using temperature rising elution fractionation and stepwise crystallization by DSC. Polym Int. 1996;40:111–22.CrossRefGoogle Scholar
  13. 13.
    Chiu FC, Wang Q, Fu Q, Honigfort P, Cheng SZD, Hsiao BS, Yeh FJ, Keating MY, Hsieh ET, Tso CC. Structural and morphological inhomogeneity of short-chain branched polyethylenes in multiple-step crystallization. J Macromol Sci Phys. 2000;B39:317–31.CrossRefGoogle Scholar
  14. 14.
    Shanks RA, Amarasinghe G. Comonomer distribution in polyethylenes analysed by DSC after thermal fractionation. J Therm Anal Calorim. 2000;59:471–82.CrossRefGoogle Scholar
  15. 15.
    Xu JT, Xu XR, Feng LX. Short chain branching distributions of metallocene-based ethylene copolymers. Eur Polym J. 2000;36:685–93.CrossRefGoogle Scholar
  16. 16.
    Xu JT, Xu XR, Feng LX, Chen LS, Chen W. Characterization of intramolecular composition heterogeneity of metallocene-based and conventional ethylene-butene copolymers using TREF/DSC. Macromol Chem Phys. 2001;202:1524–30.CrossRefGoogle Scholar
  17. 17.
    Zhang FJ, Fu Q, Lu TJ, Huang HY, He TB. Improved thermal fractionation technique for chain structure analysis of ethylene/α-olefin copolymers. Polymer. 2002;43:1031–4.CrossRefGoogle Scholar
  18. 18.
    Zhang FJ, Liu JP, Fu Q, Huang HY, Hu ZJ, Yao S, Cai XY, He TB. Polydispersity of ethylene sequence length in metallocene ethylene/α-olefin copolymers I. Characterized by thermal-fractionation technique. J Polym Sci Part B Polym Phys. 2002;40:813–21.CrossRefGoogle Scholar
  19. 19.
    Zhai YM, Wang Y, Yang W, Xie BH, Yang MB. A thermal method for quantitatively determinating the content of short chain branching in ethylene/alpha-olefin copolymers. J Therm Anal Calorim. 2012;110:1389–94.CrossRefGoogle Scholar
  20. 20.
    Müller AJ, Hernández ZH, Arnal ML, Sánchez JJ. Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym Bull. 1997;39:465–72.CrossRefGoogle Scholar
  21. 21.
    Arnal ML, Balsamo V, Ronca G, Sánchez A, Müller AJ, Cañizales E, de Navarro CU. Applications of successive self-nucleation and annealing (SSA) to polymer characterization. J Therm Anal Calorim. 2000;59:451–70.CrossRefGoogle Scholar
  22. 22.
    Zhang M, Lynch DT, Wanke SE. Effect of molecular structure distribution on melting and crystallization behavior of 1-butene/ethylene copolymers. Polymer. 2001;42:3067–75.CrossRefGoogle Scholar
  23. 23.
    Starck P, Rajanen K, Löfgren B. Comparative studies of ethylene-α-olefin copolymers by thermal fractionations and temperature-dependent crystallinity measurements. Thermochim Acta. 2003;395:169–81.CrossRefGoogle Scholar
  24. 24.
    Müller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30:559–603.CrossRefGoogle Scholar
  25. 25.
    Müller AJ, Lorenzo AT, Arnal ML. Recent advances and applications of “successive self-nucleation and annealing” (SSA) high speed thermal fractionation. Macromol Symp. 2009;277:207–14.CrossRefGoogle Scholar
  26. 26.
    Michell RM, Müller AJ, Deshayes G, Dubois P. Effect of sequence distribution on the isothermal crystallization kinetics and successive self-nucleation and annealing (SSA) behavior of poly(epsilon-caprolactone-co-epsilon-caprolactam) copolymers. Eur Polym J. 2010;46:1334–44.CrossRefGoogle Scholar
  27. 27.
    Lorenzo AT, Arnal ML, Müller AJ, Lin MC, Chen HL. SAXS/DSC analysis of the lamellar thickness distribution on a SSA thermally fractionated model polyethylene. Macromol Chem Phys. 2011;212:2009–16.CrossRefGoogle Scholar
  28. 28.
    de Gáscue BR, Prin JL, Hernández G, Vallés EM, Lorenzo AT, Müller AJ. Use of the successive self-nucleation and annealing technique to characterize Co-60 gamma irradiated HDPEs. J Therm Anal Calorim. 2011;103:669–78.CrossRefGoogle Scholar
  29. 29.
    Bolz LH, Eby RK. Inclusion of perfluoromethyl groups in crystals of copolymers of tetrafluoroethylene and hexafluoropropylene. J Res Natl Bur Stand Sect A. 1965;A 69:481–93.CrossRefGoogle Scholar
  30. 30.
    Endo M, Yamada K, Tadano K, Nishino Y, Yano S. Miscibility and crystallization of polytetrafluoroethylene/poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) blends. Macromol Rapid Commun. 2000;21:396–400.CrossRefGoogle Scholar
  31. 31.
    Endo M, Ohnishi A, Kutsumizu S, Shimizu T, Yano S. Crystallization in binary blends of polytetrafluoroethylene with perfluorinated tetrafluoroethylene copolymer. Polym J. 2004;36:716–27.CrossRefGoogle Scholar
  32. 32.
    Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (alpha-phase) investigated by differential scanning calorimetry. J Polym Sci Part B Polym Phys. 1993;31:1383–93.CrossRefGoogle Scholar
  33. 33.
    Pucciariello R, Mancusi C. Extreme thermal behaviors of polytetrafluoroethylene and random tetrafluoroethylene fluorinated copolymers. J Appl Polym Sci. 1999;73:919–25.CrossRefGoogle Scholar
  34. 34.
    Pucciariello R, Villani V, Mancusi C. On melt-crystallization of polytetrafluoroethylene and of random fluorinated copolymers of tetrafluoroethylene. J Appl Polym Sci. 1999;74:1607–13.CrossRefGoogle Scholar
  35. 35.
    Pucciariello R, Villani V, De Ballesteros OR. Cocrystallization in blends of random tetrafluoroethylene fluorinated copolymers: the effect of the chain structure and crystallization conditions. J Polym Sci Part B Polym Phys. 2002;40:1477–89.CrossRefGoogle Scholar
  36. 36.
    Du ZX, Xu JT, Dong Q, Fan ZQ. Thermal fractionation and effect of comonomer distribution on the crystal structure of ethylene-propylene copolymers. Polymer. 2009;50:2510–5.CrossRefGoogle Scholar
  37. 37.
    Flory PJ. Thermodynamics of crystallization in high polymers. 4. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J Chem Phys. 1949;17:223–40.CrossRefGoogle Scholar
  38. 38.
    Colson JP, Eby RK. Melting temperatures of copolymers. J Appl Phys. 1966;37:3511–4.CrossRefGoogle Scholar
  39. 39.
    Cho TY, Heck B, Strobl G. Equations describing lamellar structure parameters and melting points of polyethylene-co-(butene/octene)s. Colloid Polym Sci. 2004;282:825–32.CrossRefGoogle Scholar
  40. 40.
    Keating M, Lee IH, Wong CS. Thermal fractionation of ethylene polymers in packaging applications. Thermochim Acta. 1996;284:47–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • L. Liu
    • 1
  • Z. Z. Tong
    • 1
  • J. T. Xu
    • 1
  • Z. Q. Fan
    • 1
  • K. M. Yu
    • 2
  1. 1.MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Fluor-Polymeric PlantZhejiang Juhua Co., Ltd.QuzhouChina

Personalised recommendations