Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 2, pp 689–698 | Cite as

Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties

  • Su-Gwang Jeong
  • Jisoo Jeon
  • Okyoung Chung
  • Sughwan Kim
  • Sumin Kim


This paper deals with the thermal performances of shape-stabilized phase change materials (SSPCM) for energy saving in various fields. This study enhanced thermal properties of SSPCM using exfoliated graphite nanoplatelets (xGnP). SSPCM, which contains the xGnP, was prepared by mixing and melting techniques for high dispersibility, thermal conductivity, and latent heat storage. In the experiment, we used hexadecane, octadecane, and paraffin as phase change materials (PCMs), and they have 254.7, 247.6, and 144.6 J g−1 of latent heat capacity, and melting points of 20.84, 30.4, and 57.09 °C, respectively. The characteristics of SSPCMs were determined using SEM, DSC, FTIR, TG, TCi, and Energy simulation. SEM morphology showed homogenous dispersion of PCM and xGnP in the porous diatomite. DSC analysis results showed the latent heat capacity of SSPCM and SSPCM/xGnP composites, and TG analysis results showed the thermal reliability of the samples. Also, we checked the thermal conductivity of the SSPCM that contains xGnP, by TCi analysis.


PCM Diatomite Heat storage Impregnation Thermal conductivity xGnP Energy simulation 



This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-0005188). This study is financially supported by the Advanced Track of Green Production Processing for Reducing Greenhouse Gas Emission of the KETEP grant funded by Ministry of Knowledge Economy (NO. 20114010203140).


  1. 1.
    Cai Y, Wei Q, Huang F, Gao W. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl Energy. 2008;85:765–75.CrossRefGoogle Scholar
  2. 2.
    Veerappan M, Kalaiselvam S, Iniyan S, Goic R. Phase change characteristic study of spherical PCMs in solar energy storage. Sol Energy. 2009;83:1245–52.CrossRefGoogle Scholar
  3. 3.
    Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2009;93:136–42.CrossRefGoogle Scholar
  4. 4.
    Cai Y, Wei Q, Huang F, Lin S, Chen F, Gao W. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew Energy. 2009;34:2117–23.CrossRefGoogle Scholar
  5. 5.
    Xu X, Zhang Y, Lin K, Di H, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build. 2005;37:1084–91.CrossRefGoogle Scholar
  6. 6.
    Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P. Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build. 2005;37:215–20.CrossRefGoogle Scholar
  7. 7.
    Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 2006;38:1262–9.CrossRefGoogle Scholar
  8. 8.
    Cheng W, Zhang R, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Sol Energy Mater Sol Cells. 2010;94:1636–42.CrossRefGoogle Scholar
  9. 9.
    Alkan C, Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manage. 2011;52:687–92.CrossRefGoogle Scholar
  10. 10.
    Davis L. Diatomite. Am Ceram Soc Bull. 1991;70:860–1.Google Scholar
  11. 11.
    He B, Setterwall F. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation. Energy Convers Manage. 2002;43:1709–23.CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manage. 2006;47:303–10.CrossRefGoogle Scholar
  13. 13.
    Stritih U. Heat transfer enhancement in latent heat thermal storage system for buildings. Energy Build. 2003;35:1097–104.CrossRefGoogle Scholar
  14. 14.
    Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng. 2005;25:1623–33.CrossRefGoogle Scholar
  15. 15.
    Nakaso K, Teshima H, Yoshimura A, Nogami S, Hamada Y, Fukai J. Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chem Eng Process. 2008;47:879–85.CrossRefGoogle Scholar
  16. 16.
    Zeng JL, Cao Z, Yang DW, Xu SunLX, Zhang LF, Zhang L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.CrossRefGoogle Scholar
  17. 17.
    Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91:443–6.CrossRefGoogle Scholar
  18. 18.
    Xiao M, Feng B, Gong K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manage. 2002;43:103–8.CrossRefGoogle Scholar
  19. 19.
    Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Transf. 2001;44:2727–37.CrossRefGoogle Scholar
  20. 20.
    Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng. 2006;26:1652–61.CrossRefGoogle Scholar
  21. 21.
    Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2010;101:385–9.CrossRefGoogle Scholar
  22. 22.
    Jeon J, Jeong S, Lee J, Seo J, Kim S. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Sol Energy Mater Sol Cells. 2012;101:51–6.CrossRefGoogle Scholar
  23. 23.
    Zhang D, Zhou J, Wu K, Li Z. Granular phase changing composites for thermal energy storage. Sol Energy. 2005;78:471–80.CrossRefGoogle Scholar
  24. 24.
    Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Convers Manage. 2008;49:718–23.CrossRefGoogle Scholar
  25. 25.
    Kim H, Lee B, Choi S, Kim S, Kim H. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos A. 2007;38:1473–82.CrossRefGoogle Scholar
  26. 26.
    Jeong S, Jeon J, Seo J, Lee J, Kim S. Performance evaluation of the microencapsulated PCM for wood-based flooring application. Energy Convers Manage. 2012;64:516–21.CrossRefGoogle Scholar
  27. 27.
    Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109:295–300.CrossRefGoogle Scholar
  28. 28.
    Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153:217–21.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Su-Gwang Jeong
    • 1
  • Jisoo Jeon
    • 1
  • Okyoung Chung
    • 1
  • Sughwan Kim
    • 1
  • Sumin Kim
    • 1
  1. 1.Building Environment and Materials LabSchool of Architecture, Soongsil UniversitySeoulKorea

Personalised recommendations