Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 2, pp 589–596 | Cite as

An alternative thermal method for identification of pozzolanic activity in Ca(OH)2/pozzolan pastes

  • O. Mendoza
  • J. I. Tobón
Article

Abstract

Pozzolans play an important role in the industry of cement and concrete. They increase the mechanical strength of cement matrices and can be used to decrease the amount of cement in concrete mixtures, thus decreasing the final economic and environmental cost of production; also, as some of them are byproducts of industrial processes (such as silica fume and fly ash) and their use can be seen as a solution for some residues, that otherwise would be disposed as a waste. Pozzolans fixate the Ca(OH)2 generated during cement’s hydration reactions to form calcium silicate hydrates (C–S–H), calcium aluminate hydrates (C–A–H), or calcium aluminosilicate hydrates (C–A–S–H), depending on the nature of the pozzolan. Traditionally, the pozzolanic activity is identified using the Ca(OH)2 fixation percentage which is quantified by thermogravimetric (TG) analysis, using the mass loss due to the Ca(OH)2 dehydroxylation around 500 °C. An alternative method to identify pozzolanic activity at lower temperatures using a standard issue moisture analyzer (MA) is presented in this paper, using the mass loss due to hydrate’s dehydration generated by pozzolans in the pozzolanic reaction. Samples of Ca(OH)2 blended with different pozzolans were prepared and tested at different hydration ages. Using TG analysis and an MA, a good correlation was found between the total mass loss of the same sample, using the two methods at the same temperature. It was concluded that the MA method can be considered a less expensive and less time-consuming alternative to identify pozzolanic activity of siliceous or aluminosiliceous materials.

Keywords

Pozzolanic activity Moisture analyzer Dehydroxylation Calcium silicate hydrates (C–S–H) Calcium aluminate hydrates (C–A–H) Calcium aluminosilicate hydrates (C–A–S–H) 

References

  1. 1.
    Mostafa NY, El-Hemaly SAS, Al-Wakeel EI, El-Korashy SA, Brown PW. Characterization and evaluation of the pozzolanic activity of Egyptian industrial by-products I: silica fume and dealuminated kaolin. Cem Concr Res. 2001;31:467–74.CrossRefGoogle Scholar
  2. 2.
    Massazza F. Pozzolana and pozzolanic cements. In: Hewlett P, editor. Lea’s chemistry of cement and concrete. 4th ed. Arnold: Butterworth-Heinemann; 2004. p. 471–635.Google Scholar
  3. 3.
    Vessalas K, Thomas PS, Ray AS, Guerbois JP, Joyce P, Haggman J. Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:71–6.CrossRefGoogle Scholar
  4. 4.
    Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;81:457–62.CrossRefGoogle Scholar
  5. 5.
    Amin MS, Abo-El-Enein SA, Abdel Rahman A, Alfalous K. Artificial pozzolanic cement pastes containing burnt clay with and without silica fume. J Therm Anal Calorim. 2012;107:1105–15.CrossRefGoogle Scholar
  6. 6.
    Baert G, Hoste S, De Schutter G, De Belie N. Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. J Therm Anal Calorim. 2008;94:485–92.CrossRefGoogle Scholar
  7. 7.
    Chaipanich A, Nochaiya T. Thermal analysis and microstructure of Portland cement-fly ash-silica fume pastes. J Therm Anal Calorim. 2010;99:487–93.CrossRefGoogle Scholar
  8. 8.
    Bich C, Ambroise J, Péra J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci. 2009;44:194–200.CrossRefGoogle Scholar
  9. 9.
    Qing YE, Zenan Z, Li S, Rongshen C. A comparative study on the pozzolanic activity between nano-SiO2 and silica fume. J Wuhan Univ Technol. 2006;21:153–7.CrossRefGoogle Scholar
  10. 10.
    Giraldo C, Tobon JI, Restrepo OJ. Ultramarine blue pigment: a non-conventional pozzolan. Constr Build Mater. 2012;36:305–10.CrossRefGoogle Scholar
  11. 11.
    Bakolas A, Aggelakopoulou E, Moropoulou A. Evaluation of pozzolanic activity and physico-mechanical characteristics in ceramic powder-lime pastes. J Therm Anal Calorim. 2008;92:345–51.CrossRefGoogle Scholar
  12. 12.
    Yu LH, Ou H, Lee L. Investigation on pozzolanic effect of perlite powder in concrete. Cem Concr Res. 2003;33:73–6.CrossRefGoogle Scholar
  13. 13.
    Benezet JC, Benhassaine A. Grinding and pozzolanic reactivity of quartz powders. Powder Technol. 1999;105:167–71.CrossRefGoogle Scholar
  14. 14.
    Perraki T, Kakali G, Kontori E. Characterization and pozzolanic activity of thermally treated zeolite. J Therm Anal Calorim. 2005;82:109–13.CrossRefGoogle Scholar
  15. 15.
    Shuang Z. Rate of pozzolanic reaction of two kinds of activated coal gangue. J Shanghai Univ. 2009;13:322–6.CrossRefGoogle Scholar
  16. 16.
    Chandrasekhar S, Satyanarayana KG, Pramada PN, Raghavan P, Gupta TN. Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci. 2003;38:3159–68.CrossRefGoogle Scholar
  17. 17.
    Pinto CA, Büchler PM, Dweck J. Pozzolanic properties of a residual fcc catalyst during the early stages of cement hydration Evaluation by thermal analysis. J Therm Anal Calorim. 2007;87:715–20.CrossRefGoogle Scholar
  18. 18.
    Kroehong W, Sinsiri T, Jaturapitakkul C. Effect of palm oil fuel ash fineness on packing effect and pozzolanic reaction of blended cement paste. Procedia Eng. 2011;14:361–9.CrossRefGoogle Scholar
  19. 19.
    García R, Vigil de la Villa R, Vegas I, Frías M, Sánchez de Rojas MI. The pozzolanic properties of paper sludge waste. Constr Build Mater. 2008;22:1484–90.CrossRefGoogle Scholar
  20. 20.
    Chusilp N, Jaturapitakkul C, Kiattikomol K. Utilization of bagasse ash as a pozzolanic material in concrete. Constr Build Mater. 2009;23:3352–8.CrossRefGoogle Scholar
  21. 21.
    Villar-Cociña E, Valencia E, Santos SF, Savastano H, Frías M. Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cem Concr Compos. 2011;33:68–73.CrossRefGoogle Scholar
  22. 22.
    Federico LM, Chidiac SE, Raki L. Reactivity of cement mixtures containing waste glass using thermal analysis. J Therm Anal Calorim. 2011;104:849–58.CrossRefGoogle Scholar
  23. 23.
    Shi C, Grattan-Bellew P, Stegemann J. Conversion of a waste mud into a pozzolanic material. Constr Build Mater. 1999;13:279–84.CrossRefGoogle Scholar
  24. 24.
    Payá J, Borrachero MV, Monzó J, Peris-Morra E, Amahjour F. Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem Concr Res. 2001;31:41–9.CrossRefGoogle Scholar
  25. 25.
    Pu X. Investigation on pozzolanic effect of mineral additives in cement and concrete by specific strength index. Cem Concr Res. 1999;29:951–5.CrossRefGoogle Scholar
  26. 26.
    Hou P, Kawashima S, Kong D, Corr D, Qian J, Shah S. Modification effects of colloidal nano-SiO2 on cement hydration and its gel property. Composites: Part B. 2012. http://dx.doi.org/10.1016/j.compositesb.2012.05.056.
  27. 27.
    Galan I, Andrade C, Castellote M. Thermogravimetrical analysis for monitoring carbonation of cementitious materials uptake of CO2 and deepening in C–S–H knowledge. J Therm Anal Calorim. 2012. doi: 10.1007/s10973-012-2466-4.Google Scholar
  28. 28.
    Payá J, Monzó J, Borrachero MV, Velázquez S, Bonilla M. Determination on the pozzolanic activity of fluid catalytic cracking residue (FC3R): thermogravimetric análisis studies on FC3R-lime pastes. Cem Concr Res. 2003;33:1085–91.CrossRefGoogle Scholar
  29. 29.
    Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK. Synthesis and characterization of nanosilica prepared by precipitation method. Colloids Surf A: Physicochem. 2004;240:173–8.CrossRefGoogle Scholar
  30. 30.
    Tobón JI, Payá J, Borrachero MV, Soriano L, Restrepo OJ. Determination of the optimum parameters in the high-resolution thermogravimetric analysis (HRTG) for cementitious materials. J Therm Anal Calorim. 2012;107:233–9.CrossRefGoogle Scholar
  31. 31.
    Tobón JI, Payá J, Borrachero MV, Restrepo OJ. Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Constr Build Mater. 2012;36:736–42.CrossRefGoogle Scholar
  32. 32.
    Montgomery D. Design and analysis of experiments. 4th ed. New York: Hohn Wiley & Sons; 1997.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Grupo del Cemento y Materiales de ConstrucciónUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations