Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 2, pp 1013–1018 | Cite as

Influence of cross profile of PE fibers on thermal properties of materials



Objective evaluation techniques were used in this study of thermo-physiological and performance analyses of knitted fabrics. The KES-FB auto system and the FAST system measure the passages of air and water which were used for evaluation of the physiological properties. Fibrous materials were prepared in the form of integrated knitted fabric which on the back sides had different profiled polyester fibers and on the face sides had the combination of polyester and cotton fibers. Polyester fibers had three different profiles which were studied in dependence of the heat and moisture transfer of knitted fabrics.


Thermal properties PE Heat Profiled fibers Kes Thermo-labo-II 


  1. 1.
    Lizák P. Technical textiles. Ružomberok: NPRTVV; 2002. ISBN 80-968674-0-7.Google Scholar
  2. 2.
    Jambrich M, Balogová M, Vnenčáková J, Murárová A, Benčíková E, Pavlíková E. Fibrous materials based on polypropylene, bamboo and cotton fibers, fibre and textiles 1, Bratislava, vol. 1335-0617. 2008. p. 12–8.Google Scholar
  3. 3.
    Chowdhury B, John ME. Thermal evaluation of bio-engineered cotton. Thermochim Acta. 1998;313:43–53.CrossRefGoogle Scholar
  4. 4.
    Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Thermoanalytical techniques and their applications from medicine to construction part I. J Therm Anal Calorim. 2007;90:653–62.CrossRefGoogle Scholar
  5. 5.
    Tian F, Sun L, Mojumdar SC, Venart JES, Prasad RC. Absolute measurement of thermal conductivity of poly (acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2011;104:823–9.CrossRefGoogle Scholar
  6. 6.
    Chowdhury B, Mojumdar SC. Aspects of thermal conductivity relative to heat flow technique. J Therm Anal Calorim. 2005;81:179–82.CrossRefGoogle Scholar
  7. 7.
    Tian F, Sun L, Venart JES, Prasad RC, Mojumdar SC. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids. J Therm Anal Calorim. 2008;94:37–43.CrossRefGoogle Scholar
  8. 8.
    Mojumdar SC, Raki L, Mathis N, Schimdt K, Lang S. Synthesis, thermal conductivity, TG/DTA, AFM, FTIR, 29Si and 13C NMR studies of calcium silicate hydrate—polymer nanocomposite materials. J Therm Anal Calorim. 2006;85:119–24.CrossRefGoogle Scholar
  9. 9.
    Chowdhury B, Orehotsky J. Scope of electron transport studies by thermally stimulated discharge current measurement. J Therm Anal Calorim. 2003;73:53–7.CrossRefGoogle Scholar
  10. 10.
    Mojumdar SC, Raki L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate-poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.CrossRefGoogle Scholar
  11. 11.
    Liza’k P, Legerska J, Militky’ J, Mojumdar SC. Thermal transport characteristics of polypropylene fiber-based knitted fabrics. J Therm Anal Calorim. 2012;108:837–41.CrossRefGoogle Scholar
  12. 12.
    Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, SDC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4—A precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86:605–8.CrossRefGoogle Scholar
  13. 13.
    Mojumdar SC, Varshney KG, Agrawal A. Hybrid fibrous ion exchange materials: past, present and future. Res J Chem Environ. 2006;10:89–103.Google Scholar
  14. 14.
    Doval M, Palou M, Mojumdar SC. Hydration behaviour of C2S and C2AS nanomaterials, synthesized by sol–gel method. J Therm Anal Calorim. 2006;86:595–9.CrossRefGoogle Scholar
  15. 15.
    Mojumdar SC, Moresoli C, Simon LC, Legge RL. Edible wheat gluten (wg) protein films: preparation thermal, mechanical and spectral properties. J Therm Anal Calorim. 2011;104:929–36.CrossRefGoogle Scholar
  16. 16.
    Varshney G, Agrawal A, Mojumdar SC. Pyridine based cerium(iv) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2007;90:731–4.CrossRefGoogle Scholar
  17. 17.
    Mojumdar SC, Melnik M, Jona E. Thermal and spectral properties of Mg(II) and Cu(II) complexes with heterocyclic N-donor ligands. J Anal App Pyrolysis. 2000;53:149–60.CrossRefGoogle Scholar
  18. 18.
    Mošner P, Vosejpková K, Koudelka L, Beneš L. Thermal studies of ZnO–B2O3–P2O5–TeO2 glasses. J Therm Anal Calorim. 2012;107:1129–35.CrossRefGoogle Scholar
  19. 19.
    Mojumdar SC. Processing-moisture resistance and thermal analysis of MDF materials. J Therm Anal Calorim. 2001;64:1133–9.CrossRefGoogle Scholar
  20. 20.
    Rejitha KS, Mathew S. Investigations on the thermal behavior of hexaamminenickel(II) sulphate using TG-MS and TR-XRD. Glob J Anal Chem. 2010;1(1):100–8.Google Scholar
  21. 21.
    Pajtášová M, Ondrušová D, Jóna E, Mojumdar SC, Ľalíková S, Bazyláková T, Gregor M. Spectral and thermal characteristics of copper(II) carboxylates with fatty acid chains and their benzothiazole adducts. J Therm Anal Calorim. 2010;100:769–77.CrossRefGoogle Scholar
  22. 22.
    Mojumdar SC. Thermoanalytical and IR spectroscopy investigation of Mg(II) complexes with heterocyclic ligands. J Therm Anal Calorim. 2001;64:629–36.CrossRefGoogle Scholar
  23. 23.
    Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis and characterisation of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim. 2011;104:869–73.CrossRefGoogle Scholar
  24. 24.
    Raileanu M, Todan L, Crisan M, Braileanu A, Rusu A, Bradu C, Carpov A, Zaharescu M. Sol-gel materials with pesticide delivery properties. J Environ Protect. 2010;1:302–13.CrossRefGoogle Scholar
  25. 25.
    Liza′k P, Mura′rova′ A, Mojumdar SC. Heat transfer through a textile layer composed of hollow fibres. J Therm Anal Calorim. 2012;108:851–7.CrossRefGoogle Scholar
  26. 26.
    Mojumdar.SC, Šimon.P, Krutošíková.A. [1]Benzofuro[3,2-c]pyridine: synthesis and coordination reactions. J Therm Anal Calorim. 2009;96:103–9.CrossRefGoogle Scholar
  27. 27.
    Moricová K, Jóna E, Plško A, Mojumdar SC. Thermal stability of Li2O–SiO2–TiO2 gels evaluated by the induction period of crystallization. J Therm Anal Calorim. 2010;100:817–20.CrossRefGoogle Scholar
  28. 28.
    Mojumdar SC, Miklovic J, Krutosikova A, Valigura D, Stewart JM. Furopyridines and furopyridine-Ni(II) complexes—synthesis, thermal and spectral characterization. J Therm Anal Calorim. 2005;81:211–5.CrossRefGoogle Scholar
  29. 29.
    Vasudevan G, AnbuSrinivasan P, Madhurambal G, Mojumdar SC. Thermal analysis, effect of dopants, spectral characterisation and growth aspects of KAP crystals. J Therm Anal Calorim. 2009;96:99–102.CrossRefGoogle Scholar
  30. 30.
    Murárová A. Physiology of clothing. men′s thermal regulation. vlákna a Textil. 2001;8(1):48–9.Google Scholar
  31. 31.
    Kovář R. Technologie pletení a prolétání TU Liberec. 1985.Google Scholar
  32. 32.
    Kawabata S. The standardization and analysis of handle valuation department of polymer chemistry. Kyoto: Kyoto Univerzity; 1978.Google Scholar
  33. 33.
    STN 80 0856 EN 29865. Stanovenie nepremokavosti plošných textílií podľa Bundermansovej metódy. Bratislava: SÚTN; 1997.Google Scholar
  34. 34.
    STN ISO 9237:1995. Stanovenie priepustnosti vzduchu plošnými textíliami. Bratislava: SÚTN; 1998.Google Scholar
  35. 35.
    FASTU sersmanual. CSIRO Division of wootechnology. Austrália; 1998.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Faculty of Industrial Technologies, University of Alexander Dubček in TrenčínPúchovSlovakia
  2. 2.Department of ChemistryUniversity of GuelphGuelphCanada
  3. 3.Department of Chemical Technologies and EnvironmentFaculty of Industrial Technologies, Trenčín University of A. DubčekPúchovSlovakia

Personalised recommendations