Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 113, Issue 3, pp 1209–1216 | Cite as

Kinetic parameters for thermal decomposition of hydrazine

  • L. B. Santos
  • C. A. Ribeiro
  • J. M. V. Capela
  • M. S. Crespi
  • M. A. S. Pimentel
  • M. De Julio
Article

Abstract

The propulsion of most of the operating satellites comprises monopropellant (hydrazine––N2H4) or bipropellant (monometilydrazine—MMH and nitrogen tetroxide) chemical systems. When some sample of the propellant tested fails, the entire sample lot shall be rejected, and this action has turned into a health problem due to the high toxicity of N2H4. Thus, it is interesting to know hydrazine thermal behavior in several storage conditions. The kinetic parameters for thermal decomposition of hydrazine in oxygen and nitrogen atmospheres were determined by Capela–Ribeiro nonlinear isoconversional method. From TG data at heating rates of 5, 10, and 20 °C min−1, kinetic parameters could be determined in nitrogen (E = 47.3 ± 3.1 kJ mol−1, lnA = 14.2 ± 0.9 and T b = 69 °C) and oxygen (E = 64.9 ± 8.6 kJ mol−1, lnA = 20.7 ± 3.1 and T b = 75 °C) atmospheres. It was not possible to identify a specific kinetic model for hydrazine thermal decomposition due to high heterogeneity in reaction; however, experimental f(α)g(α) master-plot curves were closed to F 1/3 model.

Keywords

Propellant Hydrazine Non isothermal kinetic Thermal decomposition 

Notes

Acknowledgments

The authors acknowledge Coordination for the Improvement of Higher Level -or Education- Personnel (CAPES—Brazilian Ministry of Education) for financial support and Test Stand with Altitude Simulation (INPE/LCP-BTSA) for sample support.

References

  1. 1.
    Amri R, Rezoug T. Numerical study of liquid propellants combustion for space applications. Acta Astronaut. 2011;69:485–98.CrossRefGoogle Scholar
  2. 2.
    Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for hydrazines. Public Health Service, US Department of Health and Human Services. 1997.Google Scholar
  3. 3.
    World Health Organization. Environmental health criteria 68: Hydrazine. 1987.Google Scholar
  4. 4.
    Choudhary G, Hansen H. Human health perspective on environmental exposure to hydrazines: a review. Chemosphere. 1998;37:801–43.CrossRefGoogle Scholar
  5. 5.
    US Environmental Protection Agency. Integrated Risk Information System (IRIS) on Hydrazine/Hydrazine Sulfate. National Center for Environmental Assessment, Office of Research and Development. 1999.Google Scholar
  6. 6.
    Bohnsack G. Der Einfluss des Hydrazins auf das System Eisen, Wasser: Sonderdruck. VGB-Speisewassertagung. 1972.Google Scholar
  7. 7.
    Svoboda R, Ziffermayer G, Schimied H. Verteilung von Konditionierungsmitteln und Verunreinigungen im Dampf‐Wasserkreislauf von Sattdampf‐Turbinenanlagen. VGB Kranftwerkstech 59. 1979.Google Scholar
  8. 8.
    Heitmainn HG, Schub P, Seiffert K, Braun D. Chemie des Sekundar Kreislaufes in Kernkraftwerken mit Druckwasserreaktoren. VGB-Kraftwerkstechnik 64. 1984.Google Scholar
  9. 9.
    Stankovic M, Filipovic M, Kapor V. Thermal analysis in propellant stability examinations. J Therm Anal Calorim. 1998;52:439–45.CrossRefGoogle Scholar
  10. 10.
    Peng D, Chang CM, Chiu M. Thermal reactive hazards of HMX with contaminants. J Hazard Mater A. 2004;114:1–13.CrossRefGoogle Scholar
  11. 11.
    Zinn J, Rogers RN. Thermal initiation of explosive. J Phys Chem. 1962;66:2646–53.CrossRefGoogle Scholar
  12. 12.
    Mattos CE, Moreira ED, Dutra RCL, Diniz MF, Ribeiro AP, Iha K. Determination of the HMX and RDX Content in synthesized energetic material by HPLC, FT-MIR, and FT-NIR spectroscopies. Quim Nova. 2004;27:540–4.CrossRefGoogle Scholar
  13. 13.
    Liu ZR, Yin CM, Wu CHY, Chang MN. The characteristic temperature method to estimate kinetic parameters from DTA curves and to evaluate the compatibility of explosives. Propellants, Explos, Pyrotech. 2004;11:10–5.CrossRefGoogle Scholar
  14. 14.
    Lee JS, Hsu CK. Thermal properties and shelf life of HMX–HTPB based plastic-bonded explosives. Thermochim Acta. 2002;392:153–6.CrossRefGoogle Scholar
  15. 15.
    Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, Suárez-Iha MEV. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75:551–7.CrossRefGoogle Scholar
  16. 16.
    Shehata AB, Hassan MA. Poly N-(4-chlorophenyl), poly N-(4-methylphenyl) acrylamides and the copolymer of their monomers as stabilizers for nitrocellulose. Polym Degrad Stab. 2002;77:355–70.CrossRefGoogle Scholar
  17. 17.
    Mintz KJ, Jones DEG. Thermal analysis of monomethylammonium nitrate. Thermochim Acta. 1996;284:229–40.CrossRefGoogle Scholar
  18. 18.
    Ksiazczak A, Maranda A, Rosenkiewicz D. Thermal analysis of binary systems. Explosive––lead compound. J Therm Anal Calorim. 2000;60:97–102.CrossRefGoogle Scholar
  19. 19.
    Haberman J, Castorina TC. Effect of adsorbates on time of thermal initiation of lead azide. Thermochim Acta. 1972;5:153–64.CrossRefGoogle Scholar
  20. 20.
    Graybush RJ, May FG, Forsyth AC. Differential thermal analysis of primary explosives. Thermochim Acta. 1971;2:153–62.CrossRefGoogle Scholar
  21. 21.
    Oxley J, Smith J, Zheng W, Rogers E, Coburn M. Thermal decomposition pathways of 1, 3, 3-trinitroazetidine (TNAZ), related 3, 3,-dinitrozetidinium salts, and 15N, 13C, and 2H isotopomers. J Phys Chem A. 1997;101:4375–483.CrossRefGoogle Scholar
  22. 22.
    Rongzu H, Zhengquan Y, Yanjun L. The determination of the most probable mechanism function and three kinetic parameters of exothermic decomposition reaction of energetic materials by a single non-isothermal DSC curve. Thermochim Acta. 1988;123:135–51.CrossRefGoogle Scholar
  23. 23.
    Yi X, Rongzu H, Chaoqing Y, Guofu F, Jihua Z. Studies on the critical temperature of thermal explosion for 3-Nitro-1, 2, 4- triazol-5-one (NTO) and its salts. Propellants Explo Pyrotech. 1992;17:298–302.CrossRefGoogle Scholar
  24. 24.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.CrossRefGoogle Scholar
  25. 25.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  26. 26.
    Rogers RN, Morris ED. Determination of emissivities with a differential scanning calorimeter. Anal Chem. 1966;38:412–4.CrossRefGoogle Scholar
  27. 27.
    Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, Suárez-Iha MEV. TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.CrossRefGoogle Scholar
  28. 28.
    Capela JMV, Capela MV, Ribeiro CA. Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature. J Math Chem. 2009;45:769–75.CrossRefGoogle Scholar
  29. 29.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  30. 30.
    Cassimiro DL, Ribeiro CA, Capela JMV, Crespi MS, Capela MV. Kinetic parameters for thermal decomposition of supramolecular polymers derived from flunixin-meglumine adducts. J Therm Anal Calorim. 2011;105:405–10.CrossRefGoogle Scholar
  31. 31.
    Semenov NN. Some problems of chemical kinetics and reactivy. 2nd ed. Princeton: Princeton University Press; 1958.Google Scholar
  32. 32.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  33. 33.
    Vyazovkin S, Clawson JS, Wight CA. Thermal dissociation kinetics of solid and liquid ammonium nitrate. Chem Mat. 2001;13:960–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • L. B. Santos
    • 1
  • C. A. Ribeiro
    • 2
  • J. M. V. Capela
    • 2
  • M. S. Crespi
    • 2
  • M. A. S. Pimentel
    • 1
  • M. De Julio
    • 1
  1. 1.Aeronautical Institute of Technology––ITASao PauloBrazil
  2. 2.Analytical Chemistry DepartmentChemistry Institute, São Paulo State University, IQ/UNESPAraraquaraBrazil

Personalised recommendations