Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 2, pp 537–547 | Cite as

Influence of ethyl alcohol in the preparation, morphology and properties of compound DAS–Eu3+ and its thermal degradation products

  • Luiz C. Machado
  • Maria A. de Carvalho
  • Antonio A. L. Marins
  • Rodrigo V. Rodrigues
  • Jivaldo R. Matos
  • Marcos T. D’Azeredo Orlando


In this study, two compounds presenting characteristics different from each other were produced from there action between hydrated Eu3+ sulfate and Ba2+ diphenylamine-4-sulfonate using, respectively, aqueous solution for producing the Eu(C12H10NSO3)3·7H2O (A) compound and water/ethyl alcohol (7:1) solution for the Eu(C12H10NSO3)3·5H2O (B) production. The presence of alcohol molecules in the solution will interfere in the structural arrangement of anionic surfactant DAS (diphenylamine-4-sulfonate) around the metal ions Eu3+ allowing differentiation in the stoichiometric formulas, morphology, and thermal properties of these compounds and their derivatives. Thus, when treating both compounds under oxidizing atmosphere, we found different temperatures of the water loss and conversion of the intermediate pair oxydisulfate [Eu2O(SO4)2]/dioxysulfate [(Eu2O2SO4)]. However, the effect of water/surfactant/alcohol interactions in the metal ion structural arrangement becomes still more evident under reducing atmosphere. After this thermal treatment, significant changes were observed in the morphological characteristics and physical properties of the (Eu2O2S oxysulfide) in compound B with respect to compound A.


Europium Oxysulfate Oxysulfide Sulfonate 


  1. 1.
    Zhang H, Jiang H, Gong H, Sun Z-L. Characteristics of thermal decomposition products of rare earth, alkali earth metal and transition metal p-toluenesulfonates. J Therm Anal Calorim. 2005;79:731–5. doi: 10.1007/s10973-005-0604-y.CrossRefGoogle Scholar
  2. 2.
    Wang M, Jiang H, Wang Z-C. Dehydration studies of Co(II), Cu(II) and Zn(II) methanesulfonates. J Therm Anal Calorim. 2006;8:751–4. doi: 10.1007/s10973-005-7064-2.CrossRefGoogle Scholar
  3. 3.
    Delgado S, Molina-Ontoria A, Medina M-E, Pastor C-J, Jimenez-Aparicio R, Priego JL. An unexpected sulfinate–sulfonate mixed coordination polymer of copper(II). Inorg Chem Commun. 2006;9:1289–92. doi: 10.1016/j.inoche.2006.06.026.CrossRefGoogle Scholar
  4. 4.
    Yang J, Li L, Ma J-F, Liu Y-Y, Ma J-C. Two new barium sulfonates with pillared layered structures. J Mol Struct. 2006;788:43–8. doi: 10.1016/j.molstruc.2005.11.016.CrossRefGoogle Scholar
  5. 5.
    Selvan R-K, Gedanken A. Synthesis and characterization of hierarchically structured La2O2M@C:Eu3+. Eur J Inorg Chem. 2010;0: 5685–91. doi:  10.1002/ejic.201000632.Google Scholar
  6. 6.
    Llanos J, Sánchez V, Mujica C, Buljan A. Synthesis, physical properties, and electronic structure of rare earths oxysulfides Ln2O2S (Ln=Sm, Eu). Mater Res Bull. 2002;379:2285–91. doi: 10.1016/S0025-5408(02)00936-4.CrossRefGoogle Scholar
  7. 7.
    Bang J, Abboudi M, Abrams B, Hooloway P. Combustion synthesis of Eu-, Tb- and Tm- doped Ln2O2S (Ln=Y, La, Gd) phosphors. J Lumin. 2004;106:177–85. doi: 10.1016/j.jlumin.2003.09.005.CrossRefGoogle Scholar
  8. 8.
    Zhao F, Yuan M, Zhang W, Gao S. Monodisperse lanthanide oxysulfide nanocrystals. J Am Chem Soc. 2006;128:11758–9. doi: 10.1021/ja0638410.CrossRefGoogle Scholar
  9. 9.
    Ikeue K, Kawano T, Eto M, Zhang D, Machida M. X-ray structural study on the different redox behaviors of La and Pr oxysulfates/oxysulfides. J Alloys Compd. 2008;451:338–40. doi: 10.1016/j.jallcom.2007.04.145.CrossRefGoogle Scholar
  10. 10.
    Zhang D, Yoshioka F, Ikeue K, Machida M. Synthesis and oxygen release/storage properties of Ce-substituted La-oxysulfates, (La1−XCeX)O2SO4. Chem Mater. 2008;20:6697–703. doi: 10.1021/cm801629b.CrossRefGoogle Scholar
  11. 11.
    Machida M, Kawamura K, Ito K, Ikeue K. Large capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem Mater. 2005;17:1487–92. doi: 10.1021/cm0479640.CrossRefGoogle Scholar
  12. 12.
    Machida M, Kawano T, Eto M, Zhang D, Ikeue K. Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem Mater. 2007;19:954–60. doi: 10.1021/cm062625n.CrossRefGoogle Scholar
  13. 13.
    Machado L-C, Marins A-A-L, Muri E-J-B, Biondo A, Matos J-R, Mazali I-O. Complexation of the Fe(III) and Fe(II) sulphates with diphenyl-4-amine barium sulphonate (DAS): synthesis, thermogravimetric and spectroscopic studies. J Therm Anal Calorim. 2009;97:289–96. doi: 10.1007/s10973-009-0259-1.CrossRefGoogle Scholar
  14. 14.
    Yang J, Ma J-F, Wu D-M, Guto L-P, Liu J-F. Syntheses, crystal structures and characterization of divalent transition metal sulfonate complexes with o-phenanthroline. J Mol Struct. 2003;657:333–41. doi: 10.1016/S0022-2860(03)00428-9.CrossRefGoogle Scholar
  15. 15.
    Charbonner F. Thermal behavior of some compounds of methanesulfonic acid with transition metals. Thermochim Acta. 1979;33:31–9. doi: 10.1016/0040-6031(79)87027-6.CrossRefGoogle Scholar
  16. 16.
    de Maria M-F-V, Matos J-R, de Farias R-F. Synthesis, characterization and a thermal (TG-DSC) study of gadolinium and lutetium methanesulfonate coordination compounds with pyridine-N-oxide and 2-, 3- and 4- picoline-N-oxides. J Serbian Chem Soc. 2005;70:1041–8. doi: 10.2298/JSC0509041d.CrossRefGoogle Scholar
  17. 17.
    de Moura M-F-V, Matos J-R, de Farias R-F. Thermal degradation study of gadolinium and lutetium methanesulfonates. Thermochim Acta. 2004;414:159–66. doi: 10.1016/j.tca.2003.12.020.CrossRefGoogle Scholar
  18. 18.
    Cao S-W, Zhu Y-J, Chang J. Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in a mixed solvent ethylene glycol–water system. New J Chem. 2008;32:1526–30. doi: 10.1039/b719436f.CrossRefGoogle Scholar
  19. 19.
    Haines D-A, Chisholm J-A, Jones W, Motherwell W-D-S. Supramolecular synthon competition in organic sulfonates: a CSD survey. Cryst Eng Comm. 2004;6:584–8. doi: 10.1039/b413797c.CrossRefGoogle Scholar
  20. 20.
    dos Santos A-V, Matos J-R. Dehydration studies of rare earth p-toluenesulfonate hydrates by TG/DTG and DSC. J Alloys Compd. 2002;344:195–8. doi: 10.1016/S0925-8388(02)00339-0.CrossRefGoogle Scholar
  21. 21.
    dos Santos A-V. p-Toluene sulfonates of earth rare hydrated: synthesis, characterization and study thermoanalytic in different atmospheres. Ph.D. Thesis, Chemistry Institute of São Paulo, 1998.Google Scholar
  22. 22.
    Karsruhe FIZ, ICSD Collection code 95819.Google Scholar
  23. 23.
    Nakanishi K, Solomon P-H. Infrared absorption spectroscopy. San Francisco: Holden-Day; 1977.Google Scholar
  24. 24.
    Bellamy L-J. The infrared spectra of complex molecules. London: Chapman and Hall; 1980.CrossRefGoogle Scholar
  25. 25.
    Braterman P-S, Xu Z-P. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. J Mater Chem. 2003;13:268–73. doi: 10.1039/b207540g.CrossRefGoogle Scholar
  26. 26.
    Beentjes P-C-J, Van DerBrand J, De Wiit J-H-W. Interaction of ester and acid groups containing organic compounds with iron oxide surfaces. J Adhes Sci Technol. 2006;20:1–18. doi: 10.1163/156856106775212396.CrossRefGoogle Scholar
  27. 27.
    Zhang H, Wen X, Wang Y. Synthesis and characterization of sulfate and dodecylbenzene sulfonate intercalated zinc-iron layered double hydroxides by one-step coprecipitation. J Solid State Chem. 2007;180:1636–47. doi: 10.1016/j.jssc.2007.03.016.CrossRefGoogle Scholar
  28. 28.
    JCPDS—International Centre for Diffraction Data, 1996;26:1418.Google Scholar
  29. 29.
    Suponitsky Y-L, Laptev V-I. Thermodynamics of the formation of oxosulfides of rare-earth elements. Russ Chem Bull. 1997;46:279–83. doi: 1066-5285/97/4602-0279.CrossRefGoogle Scholar
  30. 30.
    Leskelä M, Niinistö L. Thermal decomposition of europium sulfite trihydrate in carbon monoxide. Thermochim Acta. 1980;37:125–30. doi: 10.1016/0040-6031(80)80032-3.CrossRefGoogle Scholar
  31. 31.
    JCPDS—International Centre for Diffraction Data, 1996;34:392.Google Scholar
  32. 32.
    Machado L-C, D’azeredo M-T-O, Corrêa H-P-S, Matos J-R, Mazali I-O. Formation of oxysulfide Ln2O2S and oxysulfate Ln2O2SO4 phases in the thermal decomposition process of lanthanide sulfonates (Ln=La, Sm). J Therm Anal Calorim. 2012;107:305–11. doi: 10.1007/s10973-011-1451-7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Luiz C. Machado
    • 1
  • Maria A. de Carvalho
    • 1
  • Antonio A. L. Marins
    • 1
  • Rodrigo V. Rodrigues
    • 1
  • Jivaldo R. Matos
    • 2
  • Marcos T. D’Azeredo Orlando
    • 3
  1. 1.Department of ChemistryUFESVitóriaBrazil
  2. 2.Chemistry Institute, USPSão CarlosBrazil
  3. 3.Department of PhysicsUFESVitóriaBrazil

Personalised recommendations