Skip to main content
Log in

Influence of ethyl alcohol in the preparation, morphology and properties of compound DAS–Eu3+ and its thermal degradation products

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, two compounds presenting characteristics different from each other were produced from there action between hydrated Eu3+ sulfate and Ba2+ diphenylamine-4-sulfonate using, respectively, aqueous solution for producing the Eu(C12H10NSO3)3·7H2O (A) compound and water/ethyl alcohol (7:1) solution for the Eu(C12H10NSO3)3·5H2O (B) production. The presence of alcohol molecules in the solution will interfere in the structural arrangement of anionic surfactant DAS (diphenylamine-4-sulfonate) around the metal ions Eu3+ allowing differentiation in the stoichiometric formulas, morphology, and thermal properties of these compounds and their derivatives. Thus, when treating both compounds under oxidizing atmosphere, we found different temperatures of the water loss and conversion of the intermediate pair oxydisulfate [Eu2O(SO4)2]/dioxysulfate [(Eu2O2SO4)]. However, the effect of water/surfactant/alcohol interactions in the metal ion structural arrangement becomes still more evident under reducing atmosphere. After this thermal treatment, significant changes were observed in the morphological characteristics and physical properties of the (Eu2O2S oxysulfide) in compound B with respect to compound A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang H, Jiang H, Gong H, Sun Z-L. Characteristics of thermal decomposition products of rare earth, alkali earth metal and transition metal p-toluenesulfonates. J Therm Anal Calorim. 2005;79:731–5. doi:10.1007/s10973-005-0604-y.

    Article  CAS  Google Scholar 

  2. Wang M, Jiang H, Wang Z-C. Dehydration studies of Co(II), Cu(II) and Zn(II) methanesulfonates. J Therm Anal Calorim. 2006;8:751–4. doi:10.1007/s10973-005-7064-2.

    Article  Google Scholar 

  3. Delgado S, Molina-Ontoria A, Medina M-E, Pastor C-J, Jimenez-Aparicio R, Priego JL. An unexpected sulfinate–sulfonate mixed coordination polymer of copper(II). Inorg Chem Commun. 2006;9:1289–92. doi:10.1016/j.inoche.2006.06.026.

    Article  CAS  Google Scholar 

  4. Yang J, Li L, Ma J-F, Liu Y-Y, Ma J-C. Two new barium sulfonates with pillared layered structures. J Mol Struct. 2006;788:43–8. doi:10.1016/j.molstruc.2005.11.016.

    Article  CAS  Google Scholar 

  5. Selvan R-K, Gedanken A. Synthesis and characterization of hierarchically structured La2O2M@C:Eu3+. Eur J Inorg Chem. 2010;0: 5685–91. doi: 10.1002/ejic.201000632.

    Google Scholar 

  6. Llanos J, Sánchez V, Mujica C, Buljan A. Synthesis, physical properties, and electronic structure of rare earths oxysulfides Ln2O2S (Ln=Sm, Eu). Mater Res Bull. 2002;379:2285–91. doi:10.1016/S0025-5408(02)00936-4.

    Article  Google Scholar 

  7. Bang J, Abboudi M, Abrams B, Hooloway P. Combustion synthesis of Eu-, Tb- and Tm- doped Ln2O2S (Ln=Y, La, Gd) phosphors. J Lumin. 2004;106:177–85. doi:10.1016/j.jlumin.2003.09.005.

    Article  CAS  Google Scholar 

  8. Zhao F, Yuan M, Zhang W, Gao S. Monodisperse lanthanide oxysulfide nanocrystals. J Am Chem Soc. 2006;128:11758–9. doi:10.1021/ja0638410.

    Article  CAS  Google Scholar 

  9. Ikeue K, Kawano T, Eto M, Zhang D, Machida M. X-ray structural study on the different redox behaviors of La and Pr oxysulfates/oxysulfides. J Alloys Compd. 2008;451:338–40. doi:10.1016/j.jallcom.2007.04.145.

    Article  CAS  Google Scholar 

  10. Zhang D, Yoshioka F, Ikeue K, Machida M. Synthesis and oxygen release/storage properties of Ce-substituted La-oxysulfates, (La1−X Ce X )O2SO4. Chem Mater. 2008;20:6697–703. doi:10.1021/cm801629b.

    Article  CAS  Google Scholar 

  11. Machida M, Kawamura K, Ito K, Ikeue K. Large capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem Mater. 2005;17:1487–92. doi:10.1021/cm0479640.

    Article  CAS  Google Scholar 

  12. Machida M, Kawano T, Eto M, Zhang D, Ikeue K. Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem Mater. 2007;19:954–60. doi:10.1021/cm062625n.

    Article  CAS  Google Scholar 

  13. Machado L-C, Marins A-A-L, Muri E-J-B, Biondo A, Matos J-R, Mazali I-O. Complexation of the Fe(III) and Fe(II) sulphates with diphenyl-4-amine barium sulphonate (DAS): synthesis, thermogravimetric and spectroscopic studies. J Therm Anal Calorim. 2009;97:289–96. doi:10.1007/s10973-009-0259-1.

    Article  CAS  Google Scholar 

  14. Yang J, Ma J-F, Wu D-M, Guto L-P, Liu J-F. Syntheses, crystal structures and characterization of divalent transition metal sulfonate complexes with o-phenanthroline. J Mol Struct. 2003;657:333–41. doi:10.1016/S0022-2860(03)00428-9.

    Article  CAS  Google Scholar 

  15. Charbonner F. Thermal behavior of some compounds of methanesulfonic acid with transition metals. Thermochim Acta. 1979;33:31–9. doi:10.1016/0040-6031(79)87027-6.

    Article  Google Scholar 

  16. de Maria M-F-V, Matos J-R, de Farias R-F. Synthesis, characterization and a thermal (TG-DSC) study of gadolinium and lutetium methanesulfonate coordination compounds with pyridine-N-oxide and 2-, 3- and 4- picoline-N-oxides. J Serbian Chem Soc. 2005;70:1041–8. doi:10.2298/JSC0509041d.

    Article  Google Scholar 

  17. de Moura M-F-V, Matos J-R, de Farias R-F. Thermal degradation study of gadolinium and lutetium methanesulfonates. Thermochim Acta. 2004;414:159–66. doi:10.1016/j.tca.2003.12.020.

    Article  Google Scholar 

  18. Cao S-W, Zhu Y-J, Chang J. Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in a mixed solvent ethylene glycol–water system. New J Chem. 2008;32:1526–30. doi:10.1039/b719436f.

    Article  CAS  Google Scholar 

  19. Haines D-A, Chisholm J-A, Jones W, Motherwell W-D-S. Supramolecular synthon competition in organic sulfonates: a CSD survey. Cryst Eng Comm. 2004;6:584–8. doi:10.1039/b413797c.

    Article  Google Scholar 

  20. dos Santos A-V, Matos J-R. Dehydration studies of rare earth p-toluenesulfonate hydrates by TG/DTG and DSC. J Alloys Compd. 2002;344:195–8. doi:10.1016/S0925-8388(02)00339-0.

    Article  Google Scholar 

  21. dos Santos A-V. p-Toluene sulfonates of earth rare hydrated: synthesis, characterization and study thermoanalytic in different atmospheres. Ph.D. Thesis, Chemistry Institute of São Paulo, 1998.

  22. Karsruhe FIZ, ICSD Collection code 95819.

  23. Nakanishi K, Solomon P-H. Infrared absorption spectroscopy. San Francisco: Holden-Day; 1977.

    Google Scholar 

  24. Bellamy L-J. The infrared spectra of complex molecules. London: Chapman and Hall; 1980.

    Book  Google Scholar 

  25. Braterman P-S, Xu Z-P. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. J Mater Chem. 2003;13:268–73. doi:10.1039/b207540g.

    Article  Google Scholar 

  26. Beentjes P-C-J, Van DerBrand J, De Wiit J-H-W. Interaction of ester and acid groups containing organic compounds with iron oxide surfaces. J Adhes Sci Technol. 2006;20:1–18. doi:10.1163/156856106775212396.

    Article  CAS  Google Scholar 

  27. Zhang H, Wen X, Wang Y. Synthesis and characterization of sulfate and dodecylbenzene sulfonate intercalated zinc-iron layered double hydroxides by one-step coprecipitation. J Solid State Chem. 2007;180:1636–47. doi:10.1016/j.jssc.2007.03.016.

    Article  CAS  Google Scholar 

  28. JCPDS—International Centre for Diffraction Data, 1996;26:1418.

  29. Suponitsky Y-L, Laptev V-I. Thermodynamics of the formation of oxosulfides of rare-earth elements. Russ Chem Bull. 1997;46:279–83. doi:1066-5285/97/4602-0279.

    Article  CAS  Google Scholar 

  30. Leskelä M, Niinistö L. Thermal decomposition of europium sulfite trihydrate in carbon monoxide. Thermochim Acta. 1980;37:125–30. doi:10.1016/0040-6031(80)80032-3.

    Article  Google Scholar 

  31. JCPDS—International Centre for Diffraction Data, 1996;34:392.

  32. Machado L-C, D’azeredo M-T-O, Corrêa H-P-S, Matos J-R, Mazali I-O. Formation of oxysulfide Ln2O2S and oxysulfate Ln2O2SO4 phases in the thermal decomposition process of lanthanide sulfonates (Ln=La, Sm). J Therm Anal Calorim. 2012;107:305–11. doi:10.1007/s10973-011-1451-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz C. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, L.C., de Carvalho, M.A., Marins, A.A.L. et al. Influence of ethyl alcohol in the preparation, morphology and properties of compound DAS–Eu3+ and its thermal degradation products. J Therm Anal Calorim 114, 537–547 (2013). https://doi.org/10.1007/s10973-013-2958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-2958-x

Keywords

Navigation