Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 1, pp 423–429 | Cite as

Thermochemistry of interaction between cellulose modified with 2-aminomethylpyridine and divalent cations

  • Edson C. Silva Filho
  • Luiz S. Santos Júnior
  • Maria Rita M. C. Santos
  • Maria G. Fonseca
  • Kaline S. Sousa
  • Sirlane A. A. Santana
  • Claudio Airoldi
Article

Abstract

Cellulose, a biopolymer seemingly inert, was chlorinated initially by reaction with thionyl chloride and then after it becomes more reactive, reacted with 2-aminomethylpyridine molecule for increasing its capacity of removal of divalent cations from an aqueous medium. These materials were characterized by means of elemental analysis, 13C NMR, and FTIR techniques, which have proved that a successful modification has occurred. The final material (Celamp), after being characterized was submitted to adsorption assays to evaluate its interaction with cations, whose affinity was found to be Cu2+ > Co2+ > Ni2+ > Zn2+. The quantitative cation/base center interactions were calorimetrically determined and showed exothermic enthalpies of −(13.25 ± 0.12), −(15.11 ± 0.22), −(17.23 ± 0.15), and −(14.66 ± 0.27) kJ mol−1; negative Gibbs energies of −(16.3 ± 0.7), −(14.7 ± 0.7), −(14.4 ± 0.7), and −(13.3 ± 0.7) kJ mol−1; and entropies of 10 ± 2, −1 ± 1, −10 ± 1, and −5 ± 1 J mol−1 K−1 for the same sequence of cations. These favorable thermodynamic data suggest that the synthesis involving cellulose produces a new useful material for cation removal from the environment.

Keywords

Cellulose Modification Adsorption Cations Calorimetry 

Notes

Acknowledgments

Unicamp, UFPI, Fapesp, and CNPq.

References

  1. 1.
    Santana SAA, Vieira AP, da Silva Filho EC, Melo JCP, Airoldi C. Immobilization of ethylenesulfide on babassu coconut epicarp and mesocarp for divalent cation sorption. J Hazard Mater. 2009;174:714–9.CrossRefGoogle Scholar
  2. 2.
    Oliveira FJVE, da Silva Filho EC, Melo MA Jr, Airoldi C. Modified coupling agents based on thiourea, immobilized onto silica. Thermodynamics of copper adsorption. Surf Sci. 2009;603:2200.CrossRefGoogle Scholar
  3. 3.
    Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater. 2003;B97:219–43.CrossRefGoogle Scholar
  4. 4.
    Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62:1005–28.CrossRefGoogle Scholar
  5. 5.
    de Melo JCP, da Silva Filho EC, Santana SAA, Airoldi C. Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface. Colloids Surf A. 2009;346:138–45.CrossRefGoogle Scholar
  6. 6.
    Kamel S, Hassan EM, El-Sakhawy M. Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) Ions. J Appl Polym Sci. 2006;100:329–34.CrossRefGoogle Scholar
  7. 7.
    Jorge RA, Chagas AP. Adsorção de cations Al(III) por celulose em solução aquosa. Quím Nova. 1988;11:489–90.Google Scholar
  8. 8.
    Musyoka SM, Ngila JC, Moodley B, Petrik L, Kindness A. Synthesis, characterization, and adsorption kinetic studies of ethylenediamine modified cellulose for removal of Cd and Pb. Anal Lett. 2011;44:1925–36.CrossRefGoogle Scholar
  9. 9.
    Yan H, Zhang W, Kan X, Dong L, Jiang Z, Li H, Yang H, Cheng R. Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids Surf A. 2011;380:143–51.CrossRefGoogle Scholar
  10. 10.
    Abdel-Halima ES, Al-Deyab SS. Chemically modified cellulosic adsorbent for divalent cations removal from aqueous solutions. Carbohydr Polym. 2012;87:1863–8.CrossRefGoogle Scholar
  11. 11.
    Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H. Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym. 2009;75:110–4.CrossRefGoogle Scholar
  12. 12.
    da Silva Filho EC, Silva LS, Lima LCB, Santos Júnior LS, Santos MRMC, Matos JME, Airoldi C. Thermodynamic data of 6-(4′-aminobutilamino)-6-deoxycellulose sorbent for cation removal from aqueous solution. Sep Sci Technol. 2011;46:2566–74.CrossRefGoogle Scholar
  13. 13.
    da Silva Filho EC, Melo JCP, Airoidi C. Preparation of ethylenediamine-achored cellulose and determination of thermochemical data for the interaction between cations and basics centers at the solid/liquid interface. Carbohydr Res. 2006;341:2842–50.CrossRefGoogle Scholar
  14. 14.
    Torres JD, Faria EA, Prado AGS. Thermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modified with ethylenediamine. J Hazard Mater. 2006;129:239–43.CrossRefGoogle Scholar
  15. 15.
    Silva Filho EC, Santana SAA, Melo JCP, Oliveira FJVE, Airoldi C. X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. J Therm Anal Calorim. 2010;100:315–21.CrossRefGoogle Scholar
  16. 16.
    da Silva Filho EC, Monteiro PDR, Sousa KS, Airoldi C. Ethylenesulfide as a useful agent for incorporation on the biopolymer chitosan in a solvent-free reaction for use in lead and cadmium removal. J Therm Anal Calorim. 2011;106:369–73.CrossRefGoogle Scholar
  17. 17.
    Santana SAA, Vieira AP, Silva Filho EC, Melo JCP, Airoldi C. Immobilization of ethylenesulfide on babassu coconut epicarp and mesocarp for divalent cation sorption. J Hazard Mater. 2010;174:714–9.CrossRefGoogle Scholar
  18. 18.
    Langmuir IJ. The constitution and fundamental properties of solids and liquids, Part 1. Solids. J Am Chem Soc. 1916;38:2221–95.CrossRefGoogle Scholar
  19. 19.
    Silva OG, Silva Filho EC, Fonseca MG, Arakaki LNH, Airoldi C. Hydroxyapatite organofunctionalized with silylating agents for heavy cation removal. J Colloid Interface Sci. 2006;302:485–91.CrossRefGoogle Scholar
  20. 20.
    Machado MO, Lopes ECN, Sousa KS, Airoldi C. The effectiveness of the protected amino group on crosslinked chitosans for copper removal and the thermodynamics of interaction at the solid/liquid interface. Carbohydr Polym. 2009;77:760–6.CrossRefGoogle Scholar
  21. 21.
    Da Silva Filho EC, de Barros Júnior JF, Santana SAA, de Melo JCP, Airoldi C. Thermodynamics of cation/basic center interactions from ethylene-1, 2-diamine+pentane-2, 4-dione cellulose incorporated. Glob J Phys Chem. 2011;2:277–86.Google Scholar
  22. 22.
    Arakaki LNH, Alves ANP, da Silva Filho EC, Fonseca MG, Oliveira SF, Espínola JGP, Airoldi C. Sequestration of Cu(II), Ni(II), and Co(II) by ethyleneimine immobilized on sílica. Themochim Acta. 2007;453:72–4.CrossRefGoogle Scholar
  23. 23.
    Sales JAA, Faria FP, Prado AGS, Airoldi C. Attachment of 2-aminomethylpyridine molecule onto grafted silica gel surface and its ability in chelating cations. Polyhedron. 2004;23:719–25.CrossRefGoogle Scholar
  24. 24.
    Oh SY, Yoo DI, Shin Y, Seo G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res. 2005;340:417–28.CrossRefGoogle Scholar
  25. 25.
    Pavia DL, Basser GM, Morrill TC. Introduction to Spectroscopy. 2nd ed. New York: Saunders College Publishing; 1996.Google Scholar
  26. 26.
    Kono H, Yunoki S, Shikano T, Fujiwara T. CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc. 2002;124:7506–11.CrossRefGoogle Scholar
  27. 27.
    da Silva Filho EC, de Melo JCP, da Fonseca MG, Airoldi C. Cation removal using cellulose chemically modified by a Schiff base procedure applying green principles. J Colloid Interface Sci. 2009;340:8–15.CrossRefGoogle Scholar
  28. 28.
    Lima IS, Airoldi C. A thermodynamic investigation on chitosan-divalent cation interactions. Thermochim Acta. 2004;421:133–9.CrossRefGoogle Scholar
  29. 29.
    Airoldi C, Arakaki LNH. Immobilization of ethylenesulfide on silica surface through sol–gel process and some thermodynamic data of divalent cation interactions. Polyhedron. 2001;20:929–36.CrossRefGoogle Scholar
  30. 30.
    Silva Filho EC. Natural polysaccharide cellulose chemically modified to cations removal and thermochemistry of interaction at the solid/liquid interface, PhD thesis. Unicamp, 2008.Google Scholar
  31. 31.
    Giles CH, Macewan TH, Nakhwa SN, Smith DJ. Studies in adsorption. XI. A system of classification of solution adsorption isotherms. J Chem Soc. 1960;1:3973–93.CrossRefGoogle Scholar
  32. 32.
    Bhattacharyya KG, Sharma A. Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. J Hazard Mater. 2004;B113:97–109.CrossRefGoogle Scholar
  33. 33.
    Sales JAA, Airoldi C. Epoxide silylant agent ethylenediamine reaction product anchored on silica gel–Thermodynamics of cation-nitrogen interaction at solid/liquid interface. J. Non-Crystal. Solids. 2003;330:142–9.CrossRefGoogle Scholar
  34. 34.
    Nunes LM, Airoldi C. Thermochemical data on intercalation of aromatic amines into crystalline α-titanium hydrogenphosphate. Thermochim Acta. 2005;435:118–23.CrossRefGoogle Scholar
  35. 35.
    Macedo TR, Petrucelli GC, Airoldi C. Sorption and thermodynamic of cation-basic center interactions of inorganic-organic hybrids synthesized from RUB-18. Thermochim Acta. 2010;502:30–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Edson C. Silva Filho
    • 1
  • Luiz S. Santos Júnior
    • 1
  • Maria Rita M. C. Santos
    • 1
  • Maria G. Fonseca
    • 2
  • Kaline S. Sousa
    • 2
  • Sirlane A. A. Santana
    • 3
  • Claudio Airoldi
    • 4
  1. 1.LIMAVFederal University of PiauíTeresinaBrazil
  2. 2.LCCQSFederal University of ParaíbaJoão PessoaBrazil
  3. 3.DQ, Federal University of MaranhãoSão LuizBrazil
  4. 4.LATEMAT, UNICAMPCampinasBrazil

Personalised recommendations